T)

a ¥ &= =
N - = = 5
‘-v-'.'v"-

munmmm

o BB
-AN

Tewa ().

Tewva 1.

Teva 2.

Teva 3.

Teva 4.

Tewva 5.

Tewva 6.

Teva 7.

Teva &.

Teva 9.

BeBeneHue: PazBuTre HA MUKPOCIEKTPOHHUTE TEXHOJIOTHHU 3a MPOU3BOJICTBO Ha
CI'MC. KpaTka uctopus Ha 32-0uToBuTe MUKponpoiecopu (MII) x86 u ,,ARM*.

IIporpamen mojen Ha MII: ITouAaTre 3a nmporpamed mopen. Pexumu. Peructpu
3a o0ma ynorpeda. Cnenuanusupanu peructpu. daarope Ha perucTbpa 3a Koja
Ha ycioBueTo (PKVY). Ocobenoctu. O0630p Ha nporpaMuus Mojen Ha apyru MII.

Cucrtema oT MalmMHHHM KoMmaHAaW: ['pynu komanau. Dopmar Ha KOMaHIMTE.
LOtmepann 2. Metoau 3a azapecanusa. OpTOroHaJIHOCT Ha CUCTEMaTa KOMaH/IH.

Ctpyktypa Ha MII: OcHoBHM QyHKIIMOHATHHU O0koBe B MII. BhTpeninu muHmH.
Pabora Ha KoHBeliepa.

CucreMHa MAlrCTpaJia. CurHanm Ha HIMHUTE 34 aIpCcCH H TaHHH. YHPHEJ’[HBHLU;H
CHI'HaJIH. GPFHHHEHHHH Ha OOMEHa Ha JadHHH. BH,I[DEE LHMHEKIIH. B[‘JDMCHHHTPHMH.

YcTpoucTBO 3a IJiapaia 3amncrtas: KoHBeWepw 3a YMHOMKEHHMEC M HATPyMBaHE,
JICJICHE U KOPEHYBAaHE U 3apekIaHe U cbXpaHeHue. Pexxumu. O0padoTKa Ha KbCH
BekTOpHU. Peructpos (aiin. [Iporpamen moaen. Komangu. U3karodeHHus.

MN3knwyenusa U npekbeBaHusd: M3kmoueHud. [IpekbcBaHuAa — BUIOBE U BPb3Ka C
pexxumute Ha MII. Tabnuiia Ha BEKTOPUTE Ha U3KIIOUYCHHUATA U NIPEKBbCBAHUATA.
HavanHo ycTtaHoBsiBaHe Ha MII.

YCTpOHUCTBO 3a yIipaBiicHHE Ha mamerta: OyHKuuu. Peructpu. TpaHcnanus Ha
anpecute. leckpuntopu. Kemupane u 0ydepupane. I'pemku. bydep 3a 3amuc.

PazBuTHEe Ha MHKpOIIpoIlecopHaTa apxurekrypa: Passutue va MII 1o 64-6utoBa
apxuTekTypa. ['paduunu nporecopu. MHOTOAIPEHOCT.

Kpatku cBemeHus 3a apyru MIIL: Yciaoeau npexoau v npeHoc B MII 6e3 PKY
(,,Alpha*, MIPS). MII ¢ ,,peructpos npozopen’ (SPARC). IIporpamu ,,3apagei,
cBAT!" 3a paznuunu MII u onepaumonsu cucremu (OC).

1 yac

1 yac

2 yaca

2 yaca

2 yaca

2 yaca

1 gyac

1 gac

2 yaca

1 gac

http://umis.tu-varna.bg/prep/upload/190/

http://umis.tu-varna.bg/prep/upload/190/

BbBegeHue: Pa3sutre Ha MUKPOENeKTPOHHUTE TeXHO/10rMn 3a nponssoacteso Ha CITNC.

KpaTka uctopua Ha 32-butosute mmnkponpouecopu (MI) x86 n ,,ARM*.

Technology used in computers Relative performance/unit cost

1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit 900
1995 | Very large-scale integrated circuit 2,400,000
2013 | Ultra large-scale integrated circuit 250,000,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See [:::Z) Section 1.12.

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two vears.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

10,000,000,000 18-0ors Xeon HaswelHESx. ¥
Xbox One main SoCe, g @ P22-c0re Xeon Broadwel-E5
5.000.000.000 61-core Xeon Phi 3,.15 corng Xeon vy Bridge-EX
' ' ' 12-core PO ".'EF! - BM 213

8-core Xeon Naehalam- r::-l:~.L g-ﬁﬂ:éreeﬁcf:i:;lnl?n c%% ﬂ.ﬁh"u-'l *mabila SoC*)
Shecont Xgon 7400 & Dluo-core + GEU Ins Core i7 Broadwell-U

Dual-core ltanum 26p @ o8 ?} @ it rre + GPU GT2 Cara i7 bhyI;hE K

Pentium D Presher uad-core + GF'LI Cora iT Hai.-.m
POWERS ﬁ

I%Rﬂli-lﬂcﬁc‘l'fgb Aminmré?'i"u’ldl e
K10 quead-cora
Itanium 2 kMadison GhHEF ‘C:una 2 Duo Woltdale
Pantivem D Smith 1'E'I'j"'l«. g t] Clpg:. Conroa
anium 2 MoKinlay g 9 all Cora 2 Duo Woldale 3k
Pantiurm 4 Prescatt-20HEe ¢ e 2 Dud Allendale

200,000,000

Partiurm < Cadar Mill
100,000,000 AMD KR B Drescott
Pantium 4 Northw -:u::q‘,
2%,
E E'I:::l'::”:'.Il[:]'lI::"::“:I Pantium 4 Willameatte s uﬂ‘-u: ITTS:I.IEHH Alom
- Fantium | Mobds Dikon
S AMD KT @ Fentivm Il Copparmmine PARM Cortex-Ad
— AR KE-1I
o 10,000,000 J"-HI'HE? QPentiym 1l Katmai
{E Fentsam Pl"ﬂh_ iurt ||
W E,UUD,DDG I-.é'.'l.,:n with
= Py, iw K5
=,
= S8:-110
intel B0 EE# QF!
1,000,000 A000
Tl Expl 5
EUII:I_IDD[] Ll,_-.r:i rrllz'rélr'unl_ |;h||'_|‘=r AH?!?I:IIJ
it ar:aa-:# imial o AR 3
Motorola 8020 4 19609
9, e
4 .-. ultili
1 D{:I..DDG MEEEWIJ Intel B02686 ﬁq'l'%{.ﬂ
50.000 intel 80186 ’
1
intel 80854p @ intel BOEE ﬁFﬁﬂw 2 AF?J &

Kigtonola GRLA1E :
10,000 T™sjooo Ziog 280 %3 . et
RCA 802 oo poes bal.U2
E‘DDG Intel E.I:-I:Fj¢ al‘“ | 8080 :
4 3 Technology

Intal -533-: l’153%€-ﬂ Eﬁ
1,000

QD AV ax 40 D D
CHICANCAINC IR N

S PP PSP P E PO NN
KRGS & & 9 A

S F S P
Year of introduction

Data source: Wikipedia (https:/fen.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OQurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-5SA by the author Max Roser.

7 B
10 ¢ Transistors
- (thousands)
-
10 ¢
-
10 £
Single-thread
4 | Performance
10" ¢ (SpecINT)
3 f
10 ¢
2 [. Typical Power
10 F - (Watts)
1 [Number of
10 3 Cores
of
10 F

1975 1980 1985 1990 1995 2000 2005 2010 2(515

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

MOORE’S LAW IS SLOWING

107
105
10°
104
103
107
101

10° o

1970

22 |EDM PLENARY SESSION | DECEMBER 2017

50 Years of Microprocessor Trend Data

Less Frequency
’::ﬁ ‘!#““:‘ j} Gain Per Node

|
g

Transistors (Thousands)
B Frequency (MHz)

1980 1990 2000 2010 2020 2030

See Endnotes AM Dn

10,000,000
1,000,000 O 2G

100,000 .
16M 28M

10,000 4M

Kibibit capacity
|

1000 256K

100
16K

|
10
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year of introduction

Silicon ingot

.)—

Bond die to

Slicer

Tested dies

X

X

package

|

Packaged dies

(] o T
(3] [[

X

Part
tester

T @ T
Tested
wafer

Dicer

] =

- Oog

Blank
wafers

Q@*‘—

Tested packaged dies

2010 40
processing steps

Wafer
tester

%

Patterned wafers

. ™,
A

1

Ship to

customers

[,
N 71?
4

FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Next, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found

in this final test.

..-.1.:-..;—.-..
LTy

i

|
r
i

i
| b

= {l

| aLi

e
—
|

[
e

i
|
a3

=

g —

E!“I-

ey

- -.I_"“r-l"" 1_' LI -_.' . L'_"E "'.-J '4-.""‘1"".-".:'.-.|'-.Fl i L

P

i il ;:'_L—'—‘“n. Il -..n.u f—u.rl; L iyl Lt Bl e ;

s "‘*i . ,.r—L_j - it -._-l'L'l- '—'t-L Tk de

Al T Rt P A

=

)

(s O

r

- | _"1

Pt s E.

"----.--1-------‘ L-H-r'h-ﬂ
.....u.—l..

-
g
"

EL EEFE L TR R LT EE P L T -—'r--'-r---'---"--n'--—r -

Be e B B e B B B e e s s s R nrl-r-ll-ln-ll-ll--l- N S ll-r-l-t--p-

W T T T T Ty Ty Ty ;| '_ 1,.1111!:,11‘ 616 6 16 1R RS 16 UG 06 16 06 16 1R JRS 0 1 06 U6 UG 06 16 G U6 16 6 16 LTI
i il

lm;mu il IIIII i il iE!mimu |1 IR H

i §ijiiis Bfigei: psiEs

TJ
T

il

-l COET TN B ESENFEY | BT

{3 _LE
i~

[ELTEETEIRR IR TR B

.|'|. _::_.i. i1 Bjiai
i jiit II- ik Ef :Flllll
-t;! 1 i

i!

i
e

bedid- b -
LEEIEE l-!ll-l-—| -

= pal e e

RS R A W
- 3 =

i Eeil - bk
l|l|l|-|l||-l||lll-l|l|ll (= lll-l—lll-'-l
e

bid - el

R T PG RS R

[r-
EEIRRIE R TR BEIEES =)

B R IE R LR AR 1)
bid -
r-un -1 -1

WiE WA
e i -

- - - W - a
=
- -y -
(; -] . &
i e EEY T
. " “man - n
s - o
-- 1 - _1 s
T 2 = '
! I © o i
L
. F T,
= - F P, "
vy a > -
| il ' BT
3
LT
H

v .2
ik (g e b e

LR LR B LR - SRIEE - B

aErTrE T
(R B TRIEE R L]

e
|-p

. -
.
i

FEl - b
B BET B TRIR N TR RETE R
© il i ol i T

i
i ijiitiiii
SHITTEITHT HHH

i'ﬂﬂ'ﬂ""m'ﬂqﬂ‘ MMW'F "-I.P'lﬂ'l"'i'ﬁ'lfi'l'ﬂ"'ﬁ‘m"

[RE PR STER TR B "B A PR ==
(RETERY SRR SR = AL e I
lli [ET O ER T SRR EEEY 4 B

e Bl e |—|.

P .
PERRAE P S R A -
ol = oo - R b i e

[[
l-r\-'m-lli- 1 m g
"
Eags mapa

LRI EEE R R UL R SR

_jgl T
Bai TII:!I!I‘

r lt'rll.ll.!

< BES PR = F R T R ST -

Wl b EE B W |.|-|.|

LA EETE R TR IR) nlll-n

CLU RN EUE SEE SIS TRE SEE)

LU B B L b L b

(s HII s Ht-ll-'i'l-l. H.l"lﬂHlMl-l"Ell"l:.ltml
i

v - e TR | A
| R — ERE S it] e L] e

i lhllmemmﬂlnm_n:wuummmm‘-unruu R o] b '.-ﬂl-t-_“'"-il.

e i e L ey it et e | LS O A
i <

FL

=]
Lo

=
e

e L %
'I....._.-...L..“...

[T TP ————

.ﬁ“mﬂlmlﬂﬂﬂm

i,
oot
e 2 DR e Tt

e
5k
-min ke
i i
g mavEas i.u;-.-- 1 ,l lEr I] i I' i =1k
1em' = AL L S 1] 8 | ST
ettt ' =1 2 :
[T —— . _ gL 1

L o] =% PEE

—hill‘d'l'ﬂ‘l'.:ﬂbhlll:llld s |

P T 1T T T T S - T PV & i o b e T
LERE AR T TR S EP

e, I
- i 2
—— =

[

AT

.
e | y
i B e a1 o

Mmﬁmmnﬁﬂmruuﬁﬁﬁﬁiimﬁﬁ-i 1

= 5" i b A if el _.,_.

s g

T hyag rurrareers TTE CEE

H—-'_l-lll-._-"

e

W e ——
ey o
| W e s i

e
-
Tl
=
—
—iaiigy
AL

e bt L e 8 il

amprml!_r!fﬂﬁltiﬂﬂ il

—
-y

el
|.|.|.l|'-'-l e -—..,._..,-. __,.,:I_ o8 :-. -1

A

e e
ma -

= o :
T— 111 num:m- I e T T 1"-.__.- et |

o h—MuﬂM—;' RSN R T

——e—— 7
Rl NS

!

0l
| 1 e T
L =R e TR e e mealiles @7 ae ot ekl ime - il 39
- ' -
'

e e
THILE S P N L R
& 1

| iiri o o ﬁ%mﬂmf i t1efnlmw.ﬂmmm

B et
PRl

—
.
P ——
' -

= Er it

b

-u-ua.r--.-.up R ERSREE S T R] AL L I L LR LR T LR B

s - T T el "I

-k a——

ﬂ.-m.mill wbm-ﬁqumlm;m w“ll'l’l-l _-Hl-ll'"ﬂlqm-!m EEli- -'mllllllﬂ'l-llmmwﬂ“"

iE A - | e p—— - - 3 r r .- o e e g e — e
1 = """_1.1 T i Wi] ek e g h] '.-'-\.:--' g b [ey T .:l il migl |

:"'--'.""....._a, .r-.._.,—-J—I. il] A g ..'.::'.*:""*":..,.J e 19037 - _,...."...].. l Tl g S| 81 !

Gemaes -—wm:.m‘f:m wmruultnsMJEMIMN mlmm<mwmmmmm mrm

T BT O
d :

= -] e
P = PR TS ' x
AR S e R el S i
. am

[p—_——

m— _|.|.|.|_|_.|._'__‘.‘_u_

i h_':-.--u-- —---"—'1_

EL 1

_;un.

"m".'.ﬂl!'- "III-H Mﬂi’“_ﬂ-_m 'mn-ﬂ“l [mmﬂiw.‘fﬂ}ﬁﬂ
1. | 'r- L1 'II.'-n.'-"i' Al | lllj.'..-.- 1"—_' ______I -1z Ly
|+-n.'__.":_.T..'.....l,___|--|__..,_ { = e I T - .l!; .-':..-.-..r'-'-"-l'-:'l : L i! y 1T I.—_.'....') "I'1 -ni b d __" I B
P maans ']] I TF4L L F M PR r— Wt e i bl

ﬁmm-ﬁ- FFI'I I'm“_'- S0 :I_'mw_h e 1 B Eﬂ:l.]l.lﬂ-m .'.:ul-;lr l!ll_-.F;I -H“ﬂ#ﬂﬂ :I'll o

B ik o T TR TR PR R gt g = AL 1 [B e

- - |
3 +_|‘--:_|.:.|.-.p.1nuﬂ_f—' -lh.‘._l | s = £ . --l—r - __.. . |--|.-|—_ '_._“ 7] i i -L—-— 4._-.“ P r...,_.._ F
ﬁ h:'. v "l..—nﬂ iy .'1 .|I. - T | Ll .'-. kA -E] e ™ T -Il i "'. N ---f".:I i { ! = BB T e by
A man . L e I ity Pl T e e i o S g e - e et gt S £
r.r

'mnm:p:um :-'I'I!i. i-ﬂvhﬂﬂ- h’-ﬂﬂ:ﬂ‘ i-ﬂ-i".l.l:ﬂtl-ln Ir.-|+| -ﬁﬂ'.-'..-:—”_-!llm sl IHHL. l‘ll"ﬂ HI:H‘II'HI-‘-“I H-HI%--.-__H:.F't Mﬂ*mmhtﬂ m;{ﬁ

Ay e - --q._-. — &'l----— - e —------.--—... o e il i -I------r-.-i-—--—-- L R EE 3
J ..- | [s =} """"-“" "—H'l | | 'l J- - |-1 . [.-_ .-_ _--_r. i...l | |_._ I BRI ""-'I-_ 1 oty o B e o1
e A e Lol S il R ! T P vl el i £ Tt o w B N N e
priE U L ke e Rt e : et Sl Jicl] - (RIS oA s e [T pLUSTS 3
-:'Im'h--m"”.l:? ll]:ﬂ unﬁ.WﬁM“ﬂMlﬂilw ﬂu—-ﬁmmmmu %t‘vliﬂ-t-!-l.-.ﬂ-‘--llr-l'ﬂ-‘!ﬂ n_m -2 U] I -!L'Iﬂ-t?'lﬂ'll |
il | & o = B il '_"i-———- il LN o i s el | -
wan I i H J I A ke " . W —'l.-.-_ r | =i | ._..-r-:. o [Seeaa | g
2 kg “_ ,J‘_ |- LS Tl gLy T [,r r Lad [-y ! ﬂJ—H- =i Pl :..rr .i.l T
d A L 2 - r i15n ey

-_E marrnﬁmwﬂmn sﬁnmm”""““"* "“:Eu'i?r'mh* '”?ci-':u E

-

=
e _
a "
FECETEEAEAE SRR s ElhaeL oA EE P WEIESREEE LIEEEE £
-t = = =
wi==a Sy S LI -
a '
1

e
[1= W i

[e B 4 e

SR A]

IETEERRrRr simas il d _|.-.. g e
] 1'

Pt : '.'r-) et L, -
b o TR . | e
! o .__.J-': il ! T]

I ! i
A T R
i

"‘"- 'I-L_- -I-I-1—' l el -.I!
-. & I | L emaasm
| ESENNPEEY LIRS - -.-.u_-.n.-.ll..-.u.-.- el e e - —

| r.....:.. .- |
s .. s e Mo STV
i mﬂ.-mrwmmrmwﬂ"mﬂ:xmmmg 1-unm-,mﬁm_¢-f - mmm-&nm.- mm III-IJ- _ ..- ellnm _ﬂ“ EEB_'UL‘]—“

e e

e — ..--.-_' -~ &2

i IR s A i g pE s e = 1 F-.'
__.__'"._,.. - .o - R -q,__._‘_._'_ . I 1. e . .1 " I_.I W | S ¥

| ""J‘I-I lrpdery p- | AL T"‘h'-* r"'.l'r-I o] R B eI MR g g L _.L,. |

& 1 L - ' 1

i e R R s o T T et s ot

i bl S e e Al h - . L4
‘ Ei:mwa-n_i.ﬁh‘ﬂn_m_iﬂuﬂ -_‘nmﬂ“'-ﬁ.tr-EHFm-mn hﬂl-ﬁv-' "-"'-!‘-ﬁ‘l'r-'t-‘]:uu m

l|"-'-I'T""'--' gl I"' = ||_;:
| E-fega] E5T] A

-

i ie B Rl i
am o rw
PR T -

. .

chanian

e " 2
-
T A I O I T B o R I = B e S =S
=1 |1 Rk
T

1,
g e s i £ ey e e Sy]

L3 RN n-:-:-..::ln. '1'.'-

I

= | ==
T e b | e _ T g | MEEE
SR ey L=y
5] :!l'l.ll‘ jr"'l"rrrﬂ- ety I_LI;:'-r"l'-l:;t;-ll_éj:rnrrﬂiil ﬁ-‘l'-r_l;_l_i}il l_;fll_'llj-;.-rltiu.-: ’-jn'r'lilrl't_-_ .li‘lil"l'ji:] === ...—-;*_*c:. P
a2l 0 |Vl) 00l AR a0 030 19000009 10309000 W0 dR3] 240000180000 !-!Ji_"_’_.. i

4 L—_-*i- Pt -——-+—|_+

e —
= Tl i i '’
rI = = & 3 T TN L o « ¥ FPETL s L P AL | - -
"IH__ . - E ‘-r--i-'_.lli—_i'r—rll ;> = e b T - - - = - - i _._I_. LT e -‘_H_‘—"— - - -y
ri=r == = = = = = # | e e, s ~ I-ll- I '
- = A L) s = T
e

a2 a
um - B

4

N i M b e TS - - Pl rl-rr-r -t_-l:.l-'-_-.ﬂ",-d—u—"_

JJJJJJJJ
- il

—N o
= : = T - . = I P R
T T | W e e W e oy et o — e T i — e
S & 3 r =
s -

P T
= .
i B 1 o =

e G
r,ﬁt: !.al,ﬂ. 1Lt e |l e

\E\\\\\ql
e
L\ ? | F[_ém_:_

iy it : e CHE i ' T A e o P | Z [
= - =F m— - = = - -4 -
_ 2= 3 A, oy 3 i . . n
i ! . mft Bt 3 jl' s "‘.- - - - — :
& ot P L e) I |y b 2]) ¥ . . '
' St e Tt = 5= VTt o =1
' . = . - — .1' - ' o - " v o 1 =t
Rigigh ! I o = ' ; T . | ey = - -_|-"
B = - . 1 Tl
r &% . L2 = 1 i
¥ a5, ald|
- . L - &7 |1

J
§

: T TS : -- ' E AR AU EIE
: I . 1;1‘- ™ Ak == = C1EIR] i
i y | ' LL 4 | = 1 | 3 .r‘. % 5 I -
- N 1 = e 2 [- h 2 8N
| | & - -- I EEERE - : = i - - E 1l =
n — “u s ST H B
L - 1 1 - = JH E - i e
— = - e Tl i . i) L u | g b o fel ol o |
- S : = SR 2 AEfL LR (L PEREE
= Sl [= i [1
7 SELE « - ke 1 z ANl L:FE
- 1 , : i o | ¢ |1
- ¢ = =] i 1}
| R ||-\:I"'- 1 - T - -)

20 i 200 i 20 i 2 pLEEEE R] S

Exl_ur

mnllbons ot R
I e | R Ay~ T e
¥ epe r : L] | 4 : L
o B e : —— A
-_. 1 ¥ I'-.r . .I F

I VI

S B 'H TP | I .
: - L[ot 4E :

L : il | Ny T T =
".—L:E' :_r . - T LB . 3 =

T L A=
. L Il = . IET =1

1??@

Lﬂi
= i J-i I3 | . | : I' Rl '?.1 T ...I'” i"i- -

i

-_.-"1 r.-.-.' R i "-.- :.-:[M)
= o | o] - e r_rﬁ :| -
_ i by PRl

s .- ;
- -= =
- i o & L
'S ¥
=iE -

o L-I"-lﬂ;!
EI'I‘ : -
e

s

|2 Bl = i ok 3 R B :_t l 1571 lif1.
o gt sy g Wity T DT o o T Sl
|- ez | sl 1 Lans ST 'r' r i ot "-‘_- o N T LE | =

L.'ti
: . : :
J_-+L.'.:ﬂ J40 35 e

i

-

T = '-l"-:i'n-::"'-

T

=l B -
TS I Y
- - -
o | e

i
gﬁ?ﬁ

2

i

S

+J '."1. ‘__]
e 1 d
..1. .i1 L "Jf“h

Lot = Sl i

e
L

A

LB

=<

f Eﬁ g rFf-F"’EE},EP

f *L “s."f

A] 3 [~ | &
. & []
e g B - i |
i '] T = r
- S r‘.' ol =N ' ".
AR] o
i &
A
gR— Wi : ‘“‘:
[a 2, T E_=' m
ﬂ] » i
[
':-F .; '

A1 n
-w-j !'!:!I
i '1Jp.

“‘Wmﬁf @ ;
E” "’_fﬁi*a

la

Ll
L3 -

Lﬂu‘ Al T s
1-!i_' L'1 LT L

-! E"'r IE'""‘ ::.rr._r . Phi?uh--';.

& Lﬁi"%ﬂ; ;ﬁ-iﬁ- 3

2 Ll I Pt TP Rl
E%ﬁuﬂ o 80

el .:- i
1J1
ol
'

Wi
kﬁ = ol

AN e

R

. - r - » " i
- - LL L]
= - - cx i
L amw
i e BT D e o 2"y "‘
. ’ :

B
f!_'ﬁwﬁclj?] .

b o ==

- T
3 T
]

L .

|
% ﬂTfn

0 X

L " -
- - - i I 2 I'
- [s
ot (L

Copyright (C) 2011 Visual6502.0rg

® ° fial :?ﬁr e : R7E _[yce—— JI |
L. s ; E:'ﬁtjgrjl::t":._ s % = | ' TR i | w4 T T I poiee |- M
By Do | e EORER FREey h

]
_J ‘-.!] ' " 5 LI = d
' i | .

403 lPITIITT TR O AT AT

il

1]
I

i| i I

= ==

0

; i

S

|-' [-] LR = T e . w

i e N r— - -—r— I y— 4-'_ .

.E£7 bkl :
maimel " i L} i -
== e e e it Fh—

L : X =P "

M

o=

e L TE e
— i _— i T B =
pel] - =] P "
1.. Ll - .'- o
i W il [T -, = B
. l'lk*r oL Y=gt Rggmend]|
Vi
2 [l

s

-

g
2 £ 7 e negrenl
e (e R e

=
= e 1wl il R . - i
I,'T. e i | [| EREE T | 1 ._: Al] iy

L . Il |ie
e de e anE [LES]
T l]
‘ I IJ_. m m
Ll : Tl = =1 (=i T T e
) :EI . - ! T -'" AlEs .-Il'lirirl_.ﬂil‘
8|5) |!; I T asars 1%| hE i L..I]]"i_:!l'
= Ll,_i_ = i : | i 4 his jii) '-.1_‘...-_'..Ji|_-_,.1
il T R TR '.*':--"-'3_i
- e U, 2l ey Uit
G0 0 Caid .
]| [=
{ L=

5
=

L] -|.|:;

s .-'-5'-1; : y [
g o L1 e g T e i
o me o e e e il
RO - SR
1 .".'i"'!_i.l:_'J!'.. | =0 f 'l-;j}'—" L]

1
i
]

=

[b |

chipdb.org

OCHOTUE JI=RTHINYCKIIE NAPAMETPY B A=anasee "Temiep2aTys T Mumys 60 °C. no 85 °C

Hanmanonanne napnverTm, CIMITNLIA W3Le peIms . Byrpennoe Hopwma

' odosiayesic | K6 mMCHOe | He Qoume
|I. Rooznre naupsmenne nucokoro yponis, B(Jay =~0,4 MA) : - Low 2,4 -
<. PBrionsoe Sarpimelme midkore ypewis, b (7o = 2,0 MA) o - 0,45
<. Tox norpoireintg, mi : Lo 360
4. ToE yTeuxi.pa nxorax, A Lyr _|+10]
5. BHX0:107 TOKX B cocrommi ” omene”, A M . |+I0]|
A 0L e T O P Cr IS
7. P40CTh Xora/puxonma, mp G e &

——

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

0O 3600 2667 3300 3400 T 120

2000 B]

- 1 100
= 1000 + _
= Clock Rate oqp +80 £
Y 56\] - 77 g
S 100+ 6 leo =

o
v =
3 12.5 Power 40 @
O 10 +
+ 20
3.3
1 mﬁl{ﬂﬁl{ﬂal Ehl f:-“lﬁ-m |lld-1=IIII [- |mgﬁ|m%ﬁ U
R 08 {9 38 E9 £Tcegs V8T 82 20
LT Q= Q2 Tto =2 3EQ 2398 2338 50 5@9
- P= ®—= o G- EESJ EOR [t o8N 5>
o 0O =% g2 0O 0= S
Oy a2 af X © =

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 30 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

While backwards binary compatibility is sacrosanct, Figure 2.44 shows that the x86
architecture has grown dramatically. The average is more than one instruction per
month over its 35-year lifetime!

1000
900
2 800
£ 700
=
% 600
= 500
o
g 400
£ 300
-
Z 200
100
I:}|||||||||||||||||||||||||||||||||
O PP P DD DB S S S S

Year

FIGURE 2.44 Growth of x86 instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also increases the difficulty for other companies to try to build

compatible processors.

MOV, PUSH,
POP, XCHG,
XLAT

IN, OUT

LEA, LDS, LES

LAHF, SAHF,
PUSHF, POPF

ADD, ADC,
AAA, DAA, INC

SUB, SBB,
AAS, DAS,
DEC, NEG,
CMP

MUL, IMUL,
AAM

DIV, IDIV, AAD

CBW, CWD

AND, OR,
XOR, NOT,
TEST

SAL/SHL,
SAR, SHR

ROL, ROR,
RCL, RCR

CALL, RET, JMP

JA/JNBE, JAE/
JNB/INC, JB/
JNAE/IC, JBE/

JNA, ICXZ, JE/)Z,
JG/JNLE, JGE/INL,
JL/INGE, JLE/ING,

JNE/INZ, JNO,

JNP/JPO, INS, JO,

JP/JPE, JS

LOOP, LOOPE/

LOOPZ, LOOPNE/

LOOPNZ

REP, REPE/
REPZ, REPNE/
REPNZ

MOVSSB,
MOVSW

CMPSB,
CMPSW

SCASB, SCASW

LODSB,
LODSW,
STOSB, STOSW

INT, INTO, IRET

STC, CLC,
CMC, STD,
CLD, STI, CLI

HLT, WAIT,

LOCK (ESC e 3a
Konpouecop!)
(NOP —TO0Ba €
XCHG AX,AX !)

+SALC (Hepo-
KYMEHTMpPaHa)
=96 6p.

1978 ﬂ 8086 (3,2 um nMIOSFET) -

1980 8087 (3 um)

1982 105 80186

1982 112 80286

1982 84 80287

1985 166 80386 (1,5 um CHMOS IIl)

1987 96 80387

1989 267 80486DX/P4 (1 um CHMOS IV) FPU
1993 273 80586/P5/Pentium(0,8u BiCMOS) FPU
1995 304 80686/P6/Pentium Pro (350 nm) FPU

1997 321 Pentium MMX (280 nm) FPU, MMX

1997 333 6x86MX (Cyrix) FPU, MMX, EMMI

1998 353 K6-2 (AMD, 250 nm) FPU, MMX, 3DNow!

1999 358 K6-2+ (AMD, 180 nm) FPU, MMX, Enhanced 3DNow!
1999 420 Pentium Il (250 nm CMOS) FPU, MMX, SSE

2000 489 Pentium 4 (180 nm) FPU, MMX, SSE, SSE2

2003 528 K8/ Athlon 64 (AMD, 130 nm) FPU,MMX,Enhanced 3DNow!,SSE,SSE2,AMDG64
2004 499 Pentium 4 Prescott (90 nm) FPU, MMX, SSE, SSE2, SSE3

OktomBpu 2015 r.: Xeon E3 v5 Skylake-DT (14 nm FinFET):

208 + 5 (CLMUL = Carry-less Multiplication) + 24 (BMI = Bit Manipulation Instructions)

+ 96 (FPU) + 20 (FMA = Fused Multiply-Add) =

+ 48 (MMX = Multimedia Extensions | Multiple Math Extensions | Matrix Math Extensions)

+ 68 (SSE = Streaming SIMD (Single Instruction, Multiple Data) Extensions)

+ 69 (SSE2)

+ 10 (SSE3)

+ 16 (SSSE3 = Supplemental SSE) =515

+ 49 (SSE4.1)

+ 6 (SSE4.2)

+ 14 (x86-64)

+ 2 (ADX = Multi-Precision Add-Carry Instruction Extensions)

+ 12 (AVX = Advanced Vector Extensions)

+30 (AVX2)
+13+6+8+8+8+18+2+44+12+16+63+6+10+16+12+9+2 (253 AVX3)
+ 8 (MPX = Memory Protection Extensions)

+ 4 (TSX = Transactional Synchronization Extensions) + 2 (SGX = Software Guard Extensions)

+ 10 (VT-x Virtualization) + 7 (AES-NI = Advanced Encryption Standard New Instructions) = 961

= 86525V

B vcor2

vE2588-0001
AUT UNN

AR D e

i

i

B e

e ey B oy g 2 .

g e rﬂwmmarmtnp

iy
n—.n.-—..—.-.—i..-..._.-..._.. e T o — T, £ .

hi 11.“---\&“-' . -
% 'S LT s

= X . & e - T " - Iz . 1
—l-‘!n-q.-;- - ‘-td-rr".h,lll-l-lli-ih- -whr-i-_d.ﬁ- J-bn.-_--.-l--
-*‘-L'-‘-L‘H'—;1H.L'AHT-F--5THIﬁ!ﬂ-ﬁ'ﬂh'ﬂh'ﬂ‘-\.ﬂh

-r--u-d-r-'-‘-u--l- A = - ++J'* -'*I-_-- - -

""‘-n haa b RART AL LA RRAS RaRE SARIARLE b
i BRI T N gy

2‘1'"1‘““1'!“1""“ AT
"ﬂm
T

T T

i 1§

i
=

L.
"'H"i: > Wh
t e
...:;j'*&"l“‘" % r"
1 _. ye .: l I- - ?'u— F b L R T EAT R TR T TR "
.._ r i'-ﬁ_..w—- tf-'lnr'miu'-"ﬁnmrﬁ'
-m . :.‘""r\‘.'rt11'““1111'!'“!“‘:1“'1
e Sy

3 - p— s
;:Th-lll ,".'.".l‘ HT TV T T T T

T
Lg |
.i "

1
'y

.
e sy ey mE sy e wl

- s
B e M)

T HNEE
Ty .
i

EI = N R

e g

b

it <

A
=5 e R

i

]
P

= B
.
H

..!

¥
H

sy

¥
J

.
mep el Sl Sy ik ol ek ool N

-
i
—
e~
%
oy
4
[~
=3
e
e
-
Sk
=
=
- -
-
_—

B

B WE T Y L Y L N

Iy nr il

:"H"l TSP T T e T Ty

=

o

o

Aty

=
| i
LS

2

ol

A e S
)

LLER Y

i)

s
[
]

AR

‘-rlf"
xRy xie

o S
i

¥

= T Ty ¥

g

XY
‘l..:'

L]
¥

-
|

AARLSRIRSRIRSRILS

A A ML = BWE
I O e
P L e Y

1
[

I =)y .=

00 8 R B R L O T O

N
I

™

e = 18 = e 11,

F

RO 6 U T 0 T S R ol B B

=

i

L3

i i =r
el
b

i)

I-._)r:lb"l".'. SE Wy Wz
g B G AT

i Wi

i

F) i
" 1
A

e S

i

mE WK

L= -

"0
o W

t
f

3 i-'.:‘-ll'lll-t - |

F Wi =K s

Wy BBy BRyRYRLBRVR-BLERLRR

0 0 O _.r|

1
1

N

f

[TE:

-
v

o

(L

B
S

B,

A

h*ih;

e - — Laa i SR oL A AR RS R R R IR I LR R]
i
i

R— #:'"-'11‘“ P TR e
®

r:,..,.."\qu FLRE TR T ot t*

P
'lf L A kN b
s e e e e = ——

[S H-'r tatLRaaa s iRA R R aRR L RE Eaik]
-

L
f

-——

— =' Lad LR iRl "11“*|uvr1‘ 1.\1-1-,-1.

k

T S S S R
] f%ﬂ" P TICT LT

o e -

] YR Y R AT by

e

"“H‘ L]

-
— » rﬁ“““"‘hl‘ﬂ L}
"

-
it LR IRE A AR 2T Skl L
T :.t L 1Y FVFTYI

T T P R T e
.
—— :zrr"ﬂ"'“""-"“!'|H1"|'I""|'I"II'|‘ i

R T T Y

L

s B

yrwdyowdy by dowl by

i

'\'_ .i ¥ ' i

4 4

f !#f
-4
» . F

¢
>
i

l..h ¥ FuF

",

e &

SO0 WS 0 B0 B8 0 G L

i
oo s

WSTRS

00 77 e 0N e BN e R N R e e

"A- -

. ,-! TENETE] TR P T AT

-
|
|

o
¥

EE
.
'

@

—— R R R T S e TR LR}

PU'

I
l

VTR T PR N A

i
Efedios

b

§
[T

Sar

i
Ei

T T T TR T ey ree

M

3
*

L alh L as e b b -.

i

:-l:’

ot gty it e it lf‘ir{'hlll.'fil"l!fl‘-'ﬂ1!"! W e st Ayt d i ! ﬂ'rl"'.l‘rl."lv'r!'fﬂ'irl-’i‘;l"l'ﬁ’ftr*ﬁil'fﬂ' ﬁl

AR R, R R R R R R R R R R R RLR

- 22 A2 FEFEE A R&E A

2
="

L

i .- o i A IF T
T AR A A S T i '*-"m

L #

arYm Iﬂ.‘l‘“ll‘“"iﬂl‘lﬂll?}lrl TTHE EgE =l 1l

W ik
[]

i

Al ma s MR AARE il mA e mdl e mAEw ud _

A VAIAIS

-

AR AR TN BTy, T O ey Bhiie: hibkin rdddde _ B Er2E - -‘E‘E'II‘ET'*

—— e e e e e e e

Die photos of the ARM1 processor and the Intel 386 processor to the same scale. The ARM1 is much smaller and
contained 25,000 fransistors compared to 275,000 in the 386. The 386 was higher density, with a 1.5 micron process
compared to 3 micron for the ARM1. ARM1 photo courtesy of Computer History Museum. Intel AB0386DX-20 by
Pdesousa359, CC BY-SA 3.0.

Because of the ARM1's small transistor count, the chip used very little power: about 1/10 Watt,
compared to nearly 2 Watts for the 386. The combination of high performance and low power

2.1 Overview (4)

Main extensions introduced in ARM’s basic ISA (simplified) -2 (Based on [64])

AArch32 = AArch64
/ Crypto-
To enhance | graphy ext
security l
|

the execution
of bytecodes

Jazelle RCT3
(ThumbEE)

To reduce ([Thumb I——[Thumb-2 h—_ '
code size I (ARMv4T) (ARMV6T2) '

ARMv4 ARMv5 ARMv6 ARMv7-A/R ARMvV8-A

Examples ARM710T ARM926 ARM1176 Cortex-A5-15 Cortex-A53/A57
(~1995) (2001) (2004) (2005) (2014)

:
l] i
To enhance | SIMD ' ' : '
compute | Adv. SIMD! » Adv. SIMD
capabilities | (NEON) and FP
I
\ VFPv1/2 VFPv3/v42
T e T . . o o e e U . N B S S S . e . .
T gaele L . T Jagelle . L T T T
To speed u Jazelle. e 07CE) e—
P P (Jazelle DBX) (ex. by SW) 3
I |
I

Remarks: See on the next slide.

3.1 Overview of ARM’s processor lines (1)

3.1 Overview of ARM's processor series

Subsequently, we give an overview of ARM’s processor series subdivided into three
sections, according their underlying ISAs, as follows.

ARM'’s processor series

!] !
Processors implementing Processors implementing Processors implementing
the ARMv1l - ARMv2 ISA the ARMv3 - v6 ISA the ARMv7 - ARMvS8 ISA
(Earliest ARM processors) (Early ARM processors) (ARM'’s Cortex processors)
(~ 1985-1990) (~ 1991-2004) (Since 2004/2012)
ARM1-ARM3 ARM6xx-ARM1 1xx Cortex lines
26-bit address bus 32-bit address bus ARMv7: 32-bit
32-bit data buses 32-bit data buses ARMvVS: 64-bit

with AArch64 and AArch32 modes

4. Overview of ARM’s Cortex-A series (5a)

Three design teams working in parallel []

81 DMIPS/MH r— - =\ /’, \\
S/MHz | Austin (Texas) designs
- N N° 13
([~~~ L
Sophia-Antipolis (France) designs - e \
an : 1 50p polis () desig < \ cof e
===\
_ Announced lr | Cambridge (UK) designs
6__ - s s
~
P ~
~
~
di P SUIRCE
7 ol
[QPR L0
\co P?‘:t%“‘“
4 \ 3’2,\ - "
q’ - ”
N -
— R - P -
= — \ P s
3T - - =
- . -
”
[< =l - -
V02 g e —-—— —";"—"’ J 11/2015 I
T - \ 0““”*“ { - 10/2012 Cortex-A35 | |
2005 ¢ P?\M\ﬂ | - J Cortex-A53 ARMv8 |
Co\‘P\M\ﬂ \ _ - 10/2009 Cortex-A7 20/16 nm |
+ P\65 nm N - lcortex-AS ARMvV7 P
1 I ARMV7 28 nm _______.___—
i i i i | i | i i | >
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled

[lporpameH mogen Ha MI: lNoHATHe 3a nporpameH moaen. Pexxnmun. Peructpu 3a

obwa ynoTtpeba. Cneunannsnpanum pernctpun. dnarose Ha perucTbpa 3a KoAaa Ha
ycnosueTto (PKY). OcobeHoctn. O630p Ha nporpamHma mogen Ha apyrmn M.

There are a number of different processor modes. These are shown in the following table:

Processor mode

Description

1

~N O O B~ WM

User

FIQ

IRQ
Supervisor
Abort
Undefined

System

the normal program execution mode

designed to support a high-speed data transfer or channel process
used for general-purpose interrupt handling

a protected mode for the operating system

used to implement virtual memory and/or memory protection

used to support software emulation of hardware coprocessors

used to run privileged operating system tasks
(Architecture Version 4 only)

Table 3-1: ARM processor modes

Mode changes may be made under software control or may be caused by external interrupts or
exception processing. Most application programs will execute in User mode. The other modes,
known as privileged modes, will be entered to service interrupts or exceptions or to access
protected resources: see ©3.70 Exceptions on page 3-12.

User/ Supervi- Abort Undefined Interrupt Fast

System sor interrupt

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

RS RS RS RS RS RS

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 RS R8_FIQ

R9 R9 RO RO R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_SVC | SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

Table 3-2: The ARM register set

Registers 0-12 are always free for general-purpose use. Registers 13 and 14, although available
for general use, also have specific roles:

Register 13

Register 14

Register 15

CPSR

(also known as the Stack Pointeror SP) is banked across all modes to provide
a private Stack Pointer for each mode (except System mode which shares the
user mode R13).

(also known as the Link Register or LR) is used as the subroutine return
address link register. R14 is also banked across all modes (except System
mode which shares the user mode R14).

When a Subroutine call (Branch and Link instruction) is executed, R14 is set
to the subroutine return address. The banked registers R14_SVC, R14_IRQ,
R14_FIQ, R14_ABORT and R14_UNDEF are used similarly to hold the return
address when exceptions occur (or a subroutine return address if subroutine
calls are executed within interrupt or exception routines). R14 may be treated
as a general-purpose register at all other times.

Is used specifically to hold the Program Counter (PC). When R15 is read, bits
[1:0] are zero and bits [31:2] contain the PC. When R15 is written bits[1:0] are
ignored and bits[31:2] are written to the PC. Depending on how it is used, the
value of the PC is either the address of the instruction plus n (where nis 8 for
ARM state and 4 for Thumb state) or is unpredictable.

Is the Current Program Status Register. This is accessible in all processor
modes, and contains the condition code flags, interrupt enable flags, and
current processor mode. In Architecture 4T, the CPSR also holds the
processor state. See ©3.9 Program Status Registers on page 3-10 for more
information.

lIponecopnara gpamunusa ARM (Advanced RISC Machines) ce cbcton
oT RISC mmkpomnpornecopu, kouto uMaT 16 peructespa (dur. 12.1) ¢ oOmo
npeaHazHadeHue ¢ uMeHa oT RO go R15. Perucrpure ca 32-6uroBu. Te morat
na CHABPKAT KaKTO ajJapecu, Taka u JaHHU. llociaemuusar peructep R15 ce
n310.13Ba 3a nporpameH Oposd (PC), a peructep R13 ciryxu 3a opraHuzupaHe
Ha nporpamMeH crek (SP). Peructsp R14 (LR) ce m3moasBa kKaTto perucrsp,
ChIBPIKAII] ajpeca 3a BpBIIAHe clie IoarporpamMa. Peructpure morar ga ce
M3I10JI3BaT 3a ChbXpaHeHue Ha 8, 16 u 32-O0MToBH 4mCIIa.

__— bwur 31 __—~6ur 0
RO
R1
R2
R3
R4
RS
R6
R7
RS
R9
R10
RI11
R12
R13 (Stack pointer — SP)
R14 (link register — LR)
R15 (PC)
Purypa 12.1. Perucrpu Ha nponecopa ARM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2

II_IIIIIIIII

|
Condition code flags Mode bits
—— OQverflow — State bit
Carry/Borrow/Extend FIQ disable
Zero IRQ disable
Negative/Less Than

Figure 3-4: Program Status Register format

The condition code flags

The N, Z, C and V (Negative, Zero, Carry and oVerflow) bits are collectively known as the
condition code flags. The condition code flags in the CPSR can be changed as a result of
arithmetic and logical operations in the processor, and can be tested by all ARM instructions to
determine if the instruction is to be executed. All ARM instructions may be executed conditionally

The bottom 8 bits of a PSR (incorporating |, F, T and M[4:0]) are known collectively as the
control bits. These change when an exception arises, and can be altered by software only when
the processor is in a privileged mode.

Interrupt disable bits The | and F bits are the interrupt disable bits. When set, these

The state bit

The mode bits

disable the IRQ and FIQ interrupts respectively.

Bit T is the processor state bit. When the state bit is set to 0, this
Indicates that the processor is in ARM state (ie. executing 32-bit
ARM instructions). When it is set to 1, this indicates that the
processor is in Thumb state (executing 16-bit Thumb instructions)

The state bit is only implemented on Thumb-aware processors
(Architecture 4T). On non Thumb-aware processors the state bit will
always be zero.

The M4, M3, M2, M1 and MO bits (M[4:0]) are the mode bits. These
determine the mode in which the processor operates, as shown in

C Table 3-4: The mode bits, below. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described

can be used.

M[4:0] Mode Accessible Registers

10000 User PC, R14 to RO, CPSR

10001 FIQ PC, R14_fiq to R8_fiq, R7 to RO, CPSR, SPSR_fig
10010 IRQ PC, R14_irq, R13_irq,R12 to RO, CPSR, SPSR_irq
10011 SVC PC, R14_svc, R13_svc,R12 to RO, CPSR, SPSR_svc
10111 Abort PC, R14_abt, R13_abt,R12 to RO, CPSR, SPSR_abt
11011 Undef PC, R14_und, R13_und,R12 to RO, CPSR, SPSR_und
11111 System PC, R14 to RO, CPSR (Architecture 4 only)

[TpeHoCHT Npu U3BarKaaHe e nHBepceH!

B MHOro mmnkponpouecopu ce n3nos3Ba ToO3U TPUK — U3BaAXKAa-
HEeTO A3 Ce M3BbPLUBA KaTo CbbmpaHe ¢ MHBEPCHATa CTOMHOCT Ha
ymanutena natc nor. 1 Ha BXxoada 3a NpeHoc. Taka NpeHOoCHT ce
noJsiydaBa MHBEPTUPAH HA M3X0Aa 3a NPEeHOC Ha cymaTopa. A aKo
cneaBallata KOMaHaa e n3BaxkaaHe ¢ npeHoc (SBC), To Ta3um Ko-
MaHAa U3BaXKaa MHBepCMATA Ha npeHoca. [1o-nogpobHo pa3su-
TO, aKO MMa NMPEHOC, N3BAXKAAHETO Ce CBeX/Ja OTHOBO Aa Cbbu-
paHe C MHBEePCHATa CTOMHOCT Ha ymanuTena natoc aAor. 1 Ha BXo-
[a 3a NpeHoC Ha cymaTopa, TbM KaTO MHBECUATA Ha NMPeHoca €
nor. 0. A aKo npeHoc HAMa, TO OT Ta3u sor. 1 ce nseaxaa nor. 1
(MHBEpcMATa Ha NMPeHoca) M Taka Ha BXo4a 3a NMPEHOC Ha cyma-
Topa we mma nor. 0. Ha npakTUKa ToBa 03Ha4yaBa, Ye Ha BTOpMUA
BXOZ, Ha CymaTopa ce nodaBa MHBEPCUATA Ha ymanutens (nony-
4yeHa OT MHBEPCHUTEe U3XoAu Ha TpuUrepuTe OoT perncTbpa, Kvae-
TO Ce na3un TOM), a Ha BXO4a My 3a NMPEHOC — NPEHOCHT OT Npea-
XOZHOTO TaKa M3BbPLUEHO n3Ba*KaaHe. Taka e u npu ,,ARM*.

31 General-Purpose Registers

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

Segment Registers
15 0

CS

DS
SS

ES
FS
GS

31 Status and Control Registers g

EFLAGS

31 0

EIP

General-Purpose Registers

0 16-bit 32-bit

31 1615 87
AH AL AX
BH BL BX
CH CL CX
DH DL DX
BP
Sl
DI
SP

EAX
EBX
ECX
EDX
EBP
ESI

EDI
ESP

Figure 3-4. Alternate General-Purpose Register Names

[lpegnmctBa Ha ARM npea x86

Apxutektypata ARM e RISC u e cb3naneHa no-kbCHO OT X86, KOATO €
CISC. Bbnpekun T0Ba, cneaHute npeaMMmcTsa NpaBaT NporpaMute 3a
ARM no-kpaTku 0T Te3n 3a 80x86:

1.
2.

HanununeTo Ha 13 perncTrbpa 3a obia ynotpeba cpetly 7 3a 80x86.

HanuuneTo Ha 3 4o 4 onepaHga Ha KoMaHaa npu apuTMETUYHO-NO-
rmyecknTe onepaumu cpelly 2 3a 80x86 u gopu camo 1 3a YMHOXe-
HWETO U AeneHeTo (BAPHO e, Ye komaHaata IMUL (80186+) uma 3-
onepaHeH BapuaHT, a HaKon HoBu FMA4- n XOP-komaHan umar no
5 onepaHaa, Ho Te ca PAAKO CpeLlaHu, Crieunannanpaqn u CnoXKHu).

. Bb3amoXxHoCTTa BCsika KOMaHAaa ia 6be HanpaBeHa yCroBHa.
. BbaMoxxHOCTTa 3a 1360p Aanv kOMaHaaTa aa npoMeHs: (hnaroBeTe

UIN HE.

. Bb3amoxxHocTTa Aa ce paboTu ¢ M3MECTEHO KOMWe Ha AeCHUs one-

paHm.
OpTOroHaaHuAT Habop OT KOMaHAM 1 afpecHn pexxumm (Ha 80x86 e
HeopPTOroHaseH).

HepocTtatbum Ha ARM cnpamo x86

. HAMa TpMKoMnoHeHTEH aapeceH pexxmm (Cc 2 agpecHn perncrbpa
NAOC OTMECTBAaHEe-KOHCTAaHTa), KaKbBTO MMa Npu x86.

. Hama KomaHpa, KkoaTto aa npomeHa ¢nar Z, 6e3 na npomeHs pnar
C. ToBa 3aTpyaHABa 3ana3BaHETO Ha NPeHOoCa MeXay utepauuuTte
Ha UMKbAA.

. HAma KomaHaa 3a pa3msiHa Ha CbAbPHKAHNETO Ha 2 pernucrbpa.

. HAma KomaHa 3a nosny4yaBaHe Ha OCTaTbKa OT LLle/I0YUCNEHO Aene-
He.

. ®narvr C nonyyaBa MHBEPCHA CTOMHOCT c/aed U3BarKhaHe u cpaB-
HeHune, 3awoTo B ARM HsaAma cybTpakTop; Mma camo cymatop. (Ho
TOBAa € NO-CKOPO 0COHBEHOCT, OTKONIKOTO HEA0CTATHK.)

Figure 4.1 CPU Registers for MIPS32

General Purpose Registers Special Purpose Registers

31 0

r) (hardwired to zero)

rl

r2

r3

rd

)

r

r]

r8

Y

rl0

rll

rl2

rl3

rl4d

rls

rl6

rl7

rl8

rl9

r20

r21

r22

r23

r24

r25

r26

r27

r28

r20

r3i0 31 0

ril PC

\l USER MODEL (UISA)

I/

SUPERVISOR MODEL — OEA
Configuratlon Reglsters

1
General-Purpose Floating-Polnt Machine State Reglster Ennmmmu_._"_ __...m,mm._%_._ _"__mm_m_m_.
Reglsters Reglsters (Read Only
MSH (64/32) PVR (32) SPR 287
GPRO (64532) e Memory Management Reglsters
GPR1 (84/32) FPR1 (64) v m: g -
R . Instructlon BAT Reglsters < Data BAT Reglsters <
“ “ IBATOU (32) SPR 528 DBATOU (32) SPR 536
GPR31 (64/32) FPR31 (64) _m____..j_l (32) SPR 529 Dm.____,.:H.”___l (32) SPR 537
CondItlon Reglster!
CR (32) IBATxU (32) | SPR xx DBATxU (32) SPR xxx
IBATxL (32) | SPR o DBATxL (32) SPR
Floating-Polnt Status
and Control Reglster’ -
Segment Reglsters
FPSCR (32) — 5RO 32)
XER Reglster SDR1 (64/32) | SPR 25 SRA1(32)
Address Space Reglster ° :
XER (64/32) |SPR 1 ASA &4 | SPR 260 .
Link Reglster SA1H (32)
LR (64/32) |SPR8 Exceptlon Handling Reglsters
1
Count Reglster Data Address Register DSISR
DSISAH (32 SPR 18
CTR (64/32) |SPR9 DAR (64/32) S5PRH 19 (32)
_/ \ SPRGs Save and Restore Reglsters
SPRGO (64/32) |SPR 272 SRRO (64/32) |SPR 26
USER MODEL SPRG1 (64/32) |SPR 273 SRR1 (64/32) [SPR 27
VEA SPRG2 (64/32) SPR 274 Floating-Polnt Exception

Time Base Facllity '
(For Reading)

SPRG3 (64/32) | SPR 275

Cause Reglster (Optlonal)
FPECR SPH 1022

TBL (32) TBR 268 Miscellaneous Reglsters
TBU (32) | TBR 269 Time Base Facllity ' Data Address Breakpolint
(For Writing) Reglster (Optional)
1BL (55) SPR 264 DABR (64/32) SPR 1013
Processor Identification TBU (32) SPR 285 ()
Reglster lonal)
eg (Opt Decrementer ! mw:m_iu_ %mnmmm Reglster
PIR SPR 1023 (Optlona
DEC(32) |SPR22 EAR (32) | SPR 282

These registers are 32-bit registers only.

These registers are on 32-bit implementations only.
These registers are on 64-bit implementations only.
These registers are implementation dependent.

o whe =

PowerPC Register Set

64-bit registers operating in 32-bit mode clear the high order 32-bits.

pem2_regset.fm.2.3

Cuctema oT MalMHHKM KOMaHaM: Mpynn KomaHan. PopmaTt Ha KOMaHAUTE.
,OnepaHa 2 Metoan 3a agpecaumnna. OpTOroHaIHOCT Ha CUCTEMATA KOMaHAM.

The ARM instruction set can be divided into six broad classes of instruction:

. Branch instructions

. Data-processing instructions on page Al-7

. Status register transfer instructions on page Al1-8
. Load and store instructions on page Al1-8

. Coprocessor instructions on page Al1-10

. Exception-generating instructions on page Al-10.

Most data-processing instructions and one type of coprocessor instruction can update the four condition
code flags in the CPSR (Negative, Zero, Carry and oVerflow) according to their result.

Almost all ARM instructions contain a 4-bit condition field. One value of this field specifies that the
instruction is executed unconditionally.

Fourteen other values specity conditional execution of the instruction. If the condition code flags indicate
that the corresponding condition is true when the instruction starts executing, it executes normally.
Otherwise, the instruction does nothing. The 14 available conditions allow:

. tests for equality and non-equality
. tests for <, <=, >, and >= inequalities, in both signed and unsigned arithmetic
. each condition code flag to be tested individually.

The sixteenth value of the condition field encodes alternative instructions. These do not allow conditional
execution. Before ARMv5 these instructions were UNPREDICTABLE.

ARM Instruction Set Format

| nstruction type

31 2827 1615 87 0
Cond 0 dq I] Opcode | S Rn Rd Oper and2

Cond OOOOOOIAS Rd Rn Rs 1001 Rm

Cond O0O00UAS RdHi RdLo Rs 1001 Rm

Cond OOOlOIBlOO Rn Rd OOOO|1001 Rm

Cond O]|I H LBIWL Rn Rd O f set

Cond 10QHUYWL Rn Regi st er Li st

Cond 0O00OHU1 L Rn Rd Ofsetl] 1 H|1 O fset?2
Cond 00O FLOV*L Rn Rd 00001SH|1 Rm

Cond 1014 Q O f set

Cond 000100102 111412 1111111430001 Rn

Cond 11 QgHUN V‘*L Rn CRd CPNum O fset

Cond 1110 Opl CRn CRd CPNum| Op2 |O CRm
Cond 1110 Ol|L CRn Rd CPNum| Op2 |1 CRm
Cond 1111 SW Nunber

The ARM Instruction Set - ARM University Program - V1.0

Data processing / PSR Transfer

Multiply

Long Multiply (v3M / v4 only)
Swap

L oad/Store Byte/Word

L oad/Store Multiple

Halfword transfer : Immediate offset (v4 only)
Halfword transfer: Register offset (v4 only)
Branch

Branch Exchange (v4T only)
Coprocessor datatransfer
Coprocessor data operation
Coprocessor register transfer

Software interrupt

B POWERED

Conditional Execution

* Most instruction sets only allow branchesto be executed conditionally.

* However by reusing the condition evaluation hardware, ARM effectively
Increases number of instructions.

e All instructions contain a condition field which determines whether the
CPU will execute them.

* Non-executed instructions soak up 1 cycle.

— Still have to complete cycle so as to allow fetching and decoding of
following instructions.

* Thisremovesthe need for many branches, which stall the pipeline (3
cyclesto refill).

» Allows very dense in-line code, without branches.

* The Time penalty of not executing several conditional instructions is
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

The ARM Instruction Set - ARM University Program - V1.0

The Condition Field

31 28 24 20 16 12 8 4 0
T 1 T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T 1T 1T 1T 1T T T T T 1T 1T7T7T]
Cond I
—
0000 = EQ - Z st (equal) 1001 =LS- Cclear or Z (set unsigned

lower or same)

1010=GE- N setand V set, or N clear
and V clear (>or =)

1011 =LT-N setand V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set and
V set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or
N clear and V set (<, or =)

1110 =AL - aways
1111 = NV - reserved.

0001 = NE - Z clear (not equal)

0010 =HS/CS - C set (unsigned
higher or same)

0011=LO/CC- Cclear (unsigned
lower)

0100 = MI -N set (negative)

0101 = PL - N clear (positive or
Zero)

0110=VS-V sat (overflow)
0111 =VC-V clear (no overflow)

1000 = HI - C set and Z clear

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

Using and updating the
Condition Field

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

» For example an add instruction takes the form:

-~ ADD r0,r1,r2 , r0O =rl1l + r2 (ADDAL)
» To execute this only if the zero flag is set:
- ADDEQ r0,r1,r2 , If zero flag set then...

... ro=r1+r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

» For example to add two numbers and set the condition flags:

— ADDS r0O,rl1,r2 - r0=r1 +r2
, ... and set flags

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0

™

16

Branch instructions (1)

* Branch: B{ <cond>} | abel

* Branch with Link : BL{ <cond>} sub _routine_| abel
31 28 27 25 24 23 0
-y 1l - rrrrrrrtrrr 1t > 17ttt T T 1T 17 1711971
Cond 1 0 1L Offset

e —— Link bit 0=Branch

1 = Branch with link
Condition field

* The offset for branch instructionsiscalculated by the assembler:
« By taking the difference between the branch instruction and the

target address minus 8 (to allow for the pipeline).

» Thisgivesa?26 hit offset which isright shifted 2 bits (asthe
bottom two bits are always zero as instructions are word —

aligned) and stored into the instruction encoding.
 Thisgivesarange of + 32 Mbytes.

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

D 17

™

Branch instructions (2)

* When executing theinstruction, the processor :
 shiftsthe offset left two bits, sign extends it to 32 bits, and adds it to PC.

* Execution then continues from the new PC, once the pipeline has been
refilled.

* The" Branch with link" instruction implements a subroutine call by
writing PC-4 into the LR of the current bank.

* |.e. the address of the next instruction following the branch with link
(allowing for the pipeline).

* Toreturn from subroutine, smply need to restorethe PC from the L R:
« MOV pc, Ir
« Again, pipeline hasto refill before execution continues.

* The" Branch" instruction does not affect L R.

* Note: Architecture4T offersafurther ARM branch instruction, BX
e See Thumb Instruction Set Module for details.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 ARM 0

™

18

Data processing Instructions

* Largest family of ARM instructions, all sharing the same instruction
format.

* Contains:.

» Arithmetic operations

o Comparisons (no results - just set condition codes)

» Logical operations

« Data movement between registers
* Remember, thisisaload / store architecture

» Theseinstruction only work on registers, NOT memory.
* They each perform a specific operation on one or two operands.

» First operand always aregister - Rn

» Second operand sent to the ALU viabarrel shifter.
* Wewill examinethebarrel shifter shortly.

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

Arithmetic Operations

* Operationsare:

« ADD operandl + operand2

« ADC operandl + operand2 + carry

« SUB operandl - operand2

« SBC operandl - operand2 + carry -1

« RSB operand2 - operandl

« RSC operand2 - operandl + carry - 1
* Syntax:

e <Operation>{<cond>}{S} Rd, Rn, Operand2
* Examples

« ADD IO, r1,r2
e SUBGT 13, r3, #1
o RSBLEST4, 15, #5

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 20

Comparisons

* Theonly effect of the comparisonsisto
« UPDATE THE CONDITION FLAGS. Thus no need to set S hit.
* Operationsare:

« CMP operandl - operand2, but result not written
« CMN operandl + operand2, but result not written
o TST operandl AND operand2, but result not written
« TEQ operandl EOR operand2, but result not written
* Syntax:
¢ <Operation>{<cond>} Rn, Operand?2
* Examples:

e CMP ro, rl
e TSTEQ r2, #5

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 21

Logical Operations

* Operationsare:

« AND operandl AND operand2

« EOR operandl EOR operand?2

« ORR operandl OR operand?2

 BIC operandl AND NOT operand2 [ie bit clear]
* Syntax:

o <Operation>{<cond>}{S} Rd, Rn, Operand2
* Examples:

« AND ro, rl, r2

 BICEQ r2, r3, #/
« EORS r1,r3,r0

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

22

Data Movement

* Operationsare:

« MOV operand2

« MVN NOT operand2

Note that these make no use of operandl.

* Syntax:

o <Operation>{<cond>}{S} Rd, Operand2
* Examples:

« MOV ro, rl

« MOVS r2, #10

« MVNEQ rl1#0

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

0 23

™

Quiz #2

@ * Convert the GCD

Iy algorithm given in this
flowchart into

Yes @ 1) “Normal” assembler,
where only branches can
No

be conditional.
2) ARM assembler, where

all instructions are
Ves NO pondltlc_)nal, thus _
Improving code density.

r0=r0-rl ri=rl-r0 * The only instructions you
need are CMP, B and SUB.

The ARM Instruction Set - ARM University Program - V1.0

Quiz #2 - Sample Solutions

“Normal” Assembler

gcd cnp r0, rl ;
beq stop
blt |ess ;
sub r0, r0, r1
bal gcd

| ess sub r1, r1, rO
bal gcd

st op

reached the end?

if rO>rl
subtract rl1 fromrO

subtract r0O fromrl

ARM Conditional Assembler

gcd cnp ro, rl
subgt r0, r0, rl
sublt r1, r1, rO
bne gcd

The ARM Instruction Set - ARM University Program - V1.0

1f rO>rl

subtract rl1 fromrO

‘el se subtract rO0 fromr1l
; reached the end?

(=]
w
&
(AT}
=
=)
o
|

The Barrel Shifter

* The ARM doesn’t have actual shift instructions.

* Instead it has a barrel shifter which provides a mechanism to carry out
shifts as part of other instructions.

* S0 what operations does the barrel shifter support?

The ARM Instruction Set - ARM University Program - V1.0

Barrel Shifter - Left Shift

* Shiftsleft by the specified amount (multiplies by power s of two) e.g.
LSL #5 = multiply by 32

L ogical Shift Left (LSL)

CF [< Destination < 0

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

Barrel Shifter - Right Shifts

L ogical Shift Right

«Shiftsright by the
gpecified amount
(divides by power s of
two) e.q.

L SR #5 = divide by 32

Arithmetic Shift Right

«Shiftsright (divides by
power s of two) and
preservesthe sign bit,
for 2's complement
operations. e.g.

ASR #5 = divide by 32

The ARM Instruction Set - ARM University Program - V1.0

L ogical Shift Right

..0 —> Destination

Arithmetic Shift Right

]

—> | Destination

Sign bit shifted in

B B POWERED
=
O

28

Barrel Shifter - Rotations

Rotate Right (ROR) Rotate Right

e Similar to an ASR but the
bits wrap around as they

leave the LSB and appear as > Destination
the MSB.

e.g. ROR #5

 Note the last bit rotated is
also used as the Carry Out.

Rotate Right Extended (RRX)

Rotate Right through Carry

e This operation uses the
CPSR C flag as a 33rd bit.

« Rotates right by 1 bit. —>| Destination —>

Encoded as ROR #0.

The ARM Instruction Set - ARM University Program - V1.0

O
L

B B POWERED
=
O

29

Using the Barrel Shifter:
The Second Operand

Operand Operand < ——-

1 2
\
l \
\
Barrel \\
_Shifter \
\
! !
ALU
Result

The ARM Instruction Set - ARM University Program - V1.0

*

*

Register, optionally with shift
operation applied.

Shift value can be either be:
* 5Dit unsigned integer

» Specified in bottom byte of
another register.

*

| mmediate value
e 8 bit number

« Can berotated right through
an even number of
positions.

o Assembler will calculate
rotate for you from
constant.

B POWERED

0 30

™

Second Operand :
Shifted Register

* Theamount by which theregister isto be shifted iscontained in
either:

« theimmediate 5-bit field in the instruction

— NO OVERHEAD

— Shift isdone for free - executesin single cycle.
* the bottom byte of aregister (not PC)

— Then takes extra cycle to execute

— ARM doesn’t have enough read ports to read 3 registers at
once.

— Then same as on other processors where shift is
separate instruction.

* |f no shift is specified then a default shift isapplied: LSL #0
* |.e barrel shifter has no effect on value in register.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0

™

O

31

Second Operand :
Using a Shifted Register

* Using a multiplication instruction to multiply by a constant means first
loading the constant into a register and then waiting a number of
Internal cycles for the instruction to complete.

* A more optimum solution can often be found by using some combination
of MOVs, ADDs, SUBs and RSBs with shifts.

« Multiplications by a constant equal to a ((power of 2) £ 1) can bedonein
one cycle.

* Example: rO=rl*5
Example: rO=rl1+ (r1* 4)

I ADD rO, rl1, r1, LSL #2

* Example: r2 =r3 * 105
Example: r2=r3* 15* 7
Example: r2=r3* (16-1) * (8- 1)
I RSBr2,r3,r3,LSL#4 ;r2=r3*15
I RSBr2,r2,r2, LSL#3 :r2=r2*7

The ARM Instruction Set - ARM University Program - V1.0 0

™

B POWERED

32

Second Operand :
Immediate Value (1)

* Thereisno singleinstruction which will load a 32 bit immediate constant

Into aregister without performing a data load from memory.
* All ARM instructions are 32 bits long
« ARM instructions do not use the instruction stream as data.

* Thedata processing instruction format has 12 bits available for

operand?2
o |If used directly thiswould only give a range of 4096.

* Instead it iIsused to store 8 bit constants, giving a range of O - 255.
* These 8 bits can then berotated right through an even number of

positions (ie RORs by 0, 2, 4,..30).

» Thisgivesamuch larger range of constants that can be directly loaded,

though some constants will still need to be loaded
from memory.

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=
D ‘

33

Second Operand :
Immediate Value (2)

* Thisgivesus.

e 0-255 [0 - Oxff]

« 256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

» 1024,1040,1056,..,4080 [Ox400-0xffO, step 16, 0x40-0xff ror 28]

e 4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-0xff ror 26]
* These can beloaded using, for example:

« MOV r0, #0x40, 26 ; => MOV r0, #0x1000 (ie 4096)

* Tomakethiseaser, the assembler will convert to thisform for usif
simply given the required constant:

« MQV r0, #4096 ; => MOV r0, #0x1000 (ie 0x40 ror 26)
* The bitwise complements can also be formed using MV N:
e MQV r0, #OXFFFFFFFF ; assemblesto MV N r0, #0

* |f therequired constant cannot be generated, an error will
bereported.

B B POWERED

The ARM Instruction Set - ARM University Program - V1.0

The ARM Instruction Set - ARM University Program - V1.0

Loading full 32 bit constants

Although the MOV/M VN mechansim will load a lar ge range of constants
Into a register, sometimes this mechansim will not generate the required
constant.

Therefore, the assembler also providesa method which will load ANY 32
bit constant:

e LDR rd, =nuneri ¢ const ant

|f the constant can be constructed using either aM OV or MVN then this
will betheinstruction actually generated.

Otherwise, the assembler will produce an LDR instruction with a PC-
relative addressto read the constant from a literal pool.

 LDR r0, =0x42 ; generates MOV r0, #0x42

e LDR r0, =0x55555555; generate LDR r0O,[pc, offset to |lit pool]

Asthis mechanism will always generate the best instruction for a given
case, it istherecommended way of loading constants.

Multiplication Instructions

* TheBasic ARM providestwo multiplication instructions.
* Multiply

« MUL{<cond>}{S} Rd, Rm, Rs , Rd=Rm* Rs
* Multiply Accumulate - does addition for free
« MLA{<cond>}{S} Rd, Rm, Rs,Rn ; Rd=(Rm* Rs) + Rn

* Restrictionson use:
* Rd and Rm cannot be the same register

— Can be avoid by swapping Rm and Rs around. This works because
multiplication is commutative.

e Cannot use PC.
These will be picked up by the assembler if overlooked.
* Operands can be considered signed or unsigned
» Up to user to interpret correctly.

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=
O

36

Multiplication Implementation

* The ARM makes use of Booth’s Algorithm to perform integer
multiplication.

* On non-M ARM s this operates on 2 bits of Rs at a time.
» For each pair of bitsthistakes 1 cycle (plus 1 cycle to start with).

« However when there are no more 1'sleft in Rs, the multiplication will
early-terminate.

* Example: Multiply 18 and -1 : Rd = Rm * Rs

¢ r 71§yttt 1T p+tt 117§t 1P 1Pyt nbP 1D ypnP 1P 10§59 1T 1
Rm 18 [pooolooooloooolooooloooolooooloooiloo1ol 18 Rs

L L L L L L L L
Rs -1|1111f11121]22212)2222)]2222)]212121]2222])12112171 -1 Rm
17 cycles 4 cycles

* Note: Compiler does not use early termination criteria to
decide on which order to place operands.

The ARM Instruction Set - ARM University Program - V1.0

Extended Multiply Instructions

* M variants of ARM cores contain extended multiplication
hardware. This provides three enhancements:

* An 8 bit Booth’s Algorithm isused

— Multiplication is carried out faster (maximum for standard
Instructions is now 5 cycles).

« Early termination method improved so that now completes
multiplication when all remaining bit sets contain

— al zeroes (as with non-M ARMS), or
— all ones.

Thus the previous example would early terminatein 2 cyclesin
both cases.

* 64 bit results can now be produced from two 32bit operands
— Higher accuracy.
— Pair of registers used to store result.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 38

™

Multiply-Long and
Multiply-Accumulate Long

* Instructionsare
« MULL which gives RdHi,RdLo:=Rm*Rs
« MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo

* However thefull 64 bit of the result now matter (lower precision
multiply instructions simply throws top 32bits away)

» Need to specify whether operands are signed or unsigned
* Therefore syntax of new instructions are:

e UMULL{<cond>}{S} RdLo,RdHi,Rm,Rs

« UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs

e SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs

o SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs
* Not generated by the compiler.

Warning : Unpredictable on non-M ARMS.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0

™

Quiz #3

1. Specify instructions which will implement the following:
a)ro=16 D)ri=r0* 4
c)rO=rl/16 (rlsigned 2'scomp.) dri=r2*7

2. What will the following instructions do?
a) ADDSTrO, rl, r1, LSL #2 b) RSB r2, r1, #0

3. What does the following instruction sequence do?
ADD O, r1, r1, LSL #1
SUB O, r0, rl, LSL #4
ADD r0O, r0, r1, LSL #7

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

0 40

™

Load / Store Instructions

* The ARM is a Load / Store Architecture:
« Does not support memory to memory data processing operations.
« Must move data values into registers before using them.

* This might sound inefficient, but in practice isn’t:
 Load data values from memory into registers.

» Process datain registers using a number of data processing
Instructions which are not slowed down by memory access.

o Store results from registers out to memory.

* The ARM has three sets of instructions which interact with main
memory. These are:

« Singleregister datatransfer (LDR / STR).
» Block datatransfer (LDM/STM).
e Single Data Swap (SWP).

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 41

The ARM Instruction Set - ARM University Program - V1.0

Single reqgister data transfer

Thebasic load and storeinstructions are:
» Load and Store Word or Byte
— LDR/STR/LDRB/STRB

ARM Architecture Version 4 also adds support for halfwords and signed
data.

e Load and Store Halfword
— LDRH / STRH
» Load Signed Byte or Halfword - load value and sign extend it to 32 hits.
— LDRSB / LDRSH
All of these instructions can be conditionally executed by inserting the

appropriate condition code after STR /LDR.
 e.0. LDREQB

Syntax:
o <L DR|STR>{<cond>}{<size>} Rd, <address>

B B POWERED

Load and Store Word or Byte:
Base Register

* Thememory location to be accessed isheld in a baseregister

; Store contents of r0 to location pointed to
; by contents of rl.

; Load r2 with contents of memory location
; pointed to by contents of r1.

o STRO, [rl]

e LDRY2,[r]]

ro
Source
Register L20X0
for STR
rl
Base

Register L[.0X200 1 ——> 0x200

Memory

0x5

The ARM Instruction Set - ARM University Program - V1.0

ﬁ

r2 Destination

O0X5 Register
for LDR

B B POWERED
=

43

Load and Store Word or Byte:
Offsets from the Base Reqister

* Aswell asaccessing the actual location contained in the baseregister,
these instructions can access a location offset from the baseregister
pointer.

* Thisoffset can be
* Anunsigned 12bit immediate value (ie O - 4095 bytes).
* A register, optionally shifted by an immediate value
* Thiscan be ather added or subtracted from the baseregister:
» Prefix the offset value or register with *+’ (default) or “-’.
* Thisoffset can be applied:
» before the transfer is made: Pre-indexed addressing
— optionally auto-incrementing the base register, by postfixing the

Instruction withan ‘!".

o after the transfer is made: Post-indexed addressing
— causing the base register to be auto-incremented.

B B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Load and Store Word or Byte:
Pre-indexed Addressing

* Example: STRrO, [r1,#12] Memory 0 Source

0x5 Register

I
I for STR
Offset .

12 ——> 0x20c 0x5

rl T
Base
Register Lg0x200 - > 0x200

* Tostoreto location Ox1f4 instead use: STRrO, [r1,#-12]

* Toauto-increment base pointer to 0x20c use: STRr0, [r1, #12]!

* 1f r2 contains 3, access 0x20c by multiplying this by 4.
« STRO, [rl, r2, LSL #2]

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 45

Load and Store Word or Byte:
Post-indexed Addressing

* Example: STRrO, [r1], #12 Memory

|
Updated 't Offset ' 0 Source

Base 0x20c B 12 | 0x5 I Register
Register | I | - I 0x20c / for STR
> 0x200 0Ox5
. rl
Original

|

Base 0x200 I
Register [—I !
* Toauto-increment the baseregister to location Ox1f4 instead use:

e STRYO,[r]l], #12

* |f r2 contains 3, auto-incremenet base register to 0x20c by multiplying
this by 4:

o« STRO, [r1], r2, LSL #2

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 46

™

Load and Stores
with User Mode Privilege

* When using post-indexed addressing, thereisa further form of
L oad/Store Word/Byte:

o <LDRI|STR>{<cond>}{B} T Rd, <post_indexed address>

* When used in a privileged mode, this doesthe load/store with user mode
privilege.
* Normally used by an exception handler that is emulating a memory
access instruction that would normally execute in user mode.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 47

Example Usage of
Addressing Modes

* Imagine an array, thefirst element of which ispointed to by the contents

of rO.

: Memory

* |f wewant to access a particular element, element Offset
then we can use pre-indexed addressing: ; 5 ;
* rliselement we want. : . .
e LDR 2, [r0, rl, LSL #2] 3 12
Pointer to 2 8
* |f wewant to step through every Start of array 1 4
element of the array, for instance ro u—>o 0

to produce sum of elementsin the
array, then we can use post-indexed addressing within a loop:

* rlisaddressof current element (initially equal to r0).

« LDR2,[rl], #4

Use afurther register to storethe address of final element,
so that the loop can be correctly terminated.

B B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Offsets for Halfword and
Signed Halfword / Byte Access

* ThelLoad and Store Halfword and Load Signed Byte or Halfword
Instructions can make use of pre- and post-indexed addressing in much
the same way asthe basic load and store instructions.

* However the actual offset formats are more constrained:

 Theimmediate valueislimited to 8 bits (rather than 12 bits) giving an
offset of 0-255 bytes.

» Theregister form cannot have a shift applied to it.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 49

™

The ARM Instruction Set - ARM University Program - V1.0

Effect of endianess

The ARM can be set up to accessitsdata in either littleor big
endian format.

Little endian:

» Least significant byte of aword is stored in bits O-7 of an addressed
word.

Big endian:

 Least significant byte of aword is stored in bits 24-31 of an
addressed word.

Thishasnoreal relevance unless data is stored as wor ds and then
accessed in smaller sized quantities (halfwords or bytes).

« Which byte/ halfword is accessed will depend on the endianess of

the system involved.
0

™

B POWERED

50

Endianess Example

r0 = 0x11223344

31 2423 1615 87 0

11|22|33|44

31 2423 1615 87 : 0 31 I 2423 1615 87 0

(1=0x100 | 11 22 | 33 | 44 Memory 4 33 2 11| ri=ox100
Little-endian LDRB r2, [r1] Big-endian
31 2423 1615 87 0 31 2423 1615 87 0
00 ' 00! 00! a4 o0 ' 00 ! 00! 11
r2= 0x44 r2= 0x11

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Quiz #4

* Write asegment of code that add together elements x to x+(n-1) of an
array, wherethe element x=0isthefirst element of thearray.

* Each element of thearray isword sized (ie. 32 bits).

* The segment should use post-indexed addressing.

* At thestart of your segments, you should assumethat:
* 10 pointsto the start of the array.

Elements
e rl=X :
e 12=n !
<— X+ (n-1)
n elements :
< X +1
<— X

rOD—> <«— 0

The ARM Instruction Set - ARM University Program - V1.0 0 52

Quiz #4 - Sample Solution

__ADD r0Q, r0, ri1, LSL#2 :
ADD r2, r0, r2, LSL#2 :
MOV rl, #O :

| oop
LDR r3, [r0], #4 ;
ADD r1, r1, r3 ;
CWP r0, r2 ,
BLT | oop :

: on exit sumcontained inrl

The ARM Instruction Set - ARM University Program - V1.0

Set rO to address of el ement X
Set r2 to address of el enent n+1
Initialise counter

Access el ement and nove to next
Add contents to counter
Have we reached el enent x+n?

|f not - repeat for
next el enent

B POWERED

Block Data Transfer (1)

* ThelLoad and Store Multipleinstructions (LDM / STM) allow betweeen

1 and 16 registersto betransferred to or from memory.
* Thetransferred registerscan be either:
* Any subset of the current bank of registers (default).

» Any subset of the user mode bank of registers when in a priviledged
mode (postfix instruction witha“‘"’).

31 28 27

24 23 22 21 20 19 16 15 0

L
Cond 1

0

0

P

U

-ttt 1t 1> 11 1T 1T 1T 1 ©F T T 171
S|WJ|L Rn Register list

|_|_l

Condition field
Up/Down bit

0 = Down; subtract offset from base
1=Up; add offset to base

Pre/Post indexing bit

0 = Post; add offset after transfer,
1= Pre; add offset before transfer

The ARM Instruction Set - ARM University Program - V1.0

Baseregister Each bit correspondsto a particular
: register. For example:
L oad/Stor e bit * Bit O set causes r0 to be transferred.

(1) f ftogs]Eo memory * Bit 0 unset causes r0 not to be transferred.
—oadirommemory | At |east one register must be

L—— Write- back bit transferred asthelist cannot be empty.
0 = no write-back
1 = write address into base

PSR and force user bit
0 =don’'t load PSR or force user mode
1 =load PSR or force user mode

B POWERED

Block Data Transfer (2)

* Baseregister used to determine where memory access should occur.

» 4 different addressing modes allow increment and decrement inclusive or
exclusive of the base register location.

» Baseregister can be optionally updated following the transfer (by
appending it withan *!".

» Lowest register number is always transferred to/from lowest memory
location accessed.

* Theseinstructionsarevery efficient for
« Saving and restoring context
— For this useful to view memory as a stack.
« Moving large blocks of data around memory
— For this useful to directly represent functionality of the instructions.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0

Stacks

* A stack Is an area of memory which grows as new data is “pushed” onto

the “top” of it, and shrinks as data is “popped” off the top.
* Two pointers define the current limits of the stack.
» A base pointer

— used to point to the “bottom” of the stack (the first location).

» A stack pointer
— used to point the current “top” of the stack.

PUSH
(1,2, 3; POP s
SP——> 3
2 SP——> 2
SP . -
BASE — > BASE—> BASE—>

The ARM Instruction Set - ARM University Program - V1.0

Resul t
pop =

of

Stack Operation

* Traditionally, a stack growsdown in memory, with the last “ pushed”
value at the lowest address. The ARM also supports ascending stacks,
wher e the stack structure grows up through memory.

* Thevalue of the stack pointer can either:
 Point to the last occupied address (Full stack)
— and so needs pre-decrementing (ie before the push)
 Point to the next occupied address (Empty stack)
— and so needs post-decrementing (ie after the push)
* Thestack typeto be used is given by the postfix to the instruction:
e STMFD /LDMFD : Full Descending stack
« STMFA /LDMFA : Full Ascending stack.
« STMED / LDMED : Empty Descending stack
« STMEA / LDMEA : Empty Ascending stack
* Note: ARM Compiler will always use a Full descending stack.

B POWERED

D o7

™

The ARM Instruction Set - ARM University Program - V1.0

Stack Examples

STMFD sp!, STMED sp!, STMFA sp!, STMEA sp!,
{rO,r1,r3-r5} {rO,r1,r3-r5} {r0,r1,r3-r5} {rO,r1,r3-r5}
0x418
5
r4 rs
r3 r4
rl r3
ro rl
Old SP—> Old SP—> 5 Old SP —> OldSP —{ 0 0x400
s r4
r4 r3
3 rl
rl ro
0
Ox3e8
The ARM Instruction Set - ARM University Program - V1.0 : 0 58

Stacks and Subroutines

* One use of stacks is to create temporary register workspace for
subroutines. Any registers that are needed can be pushed onto the stack
at the start of the subroutine and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!, {r0-r12, Ir} , stack all registers

........ ;, and the return address

LDMFD sp!,{r0-r12, pc} , load all the registers
and return automatically

* See the chapter on the ARM Procedure Call Standard in the SDT
Reference Manual for further details of register usage within
subroutines.

* If the pop instruction also had the *S’ bit set (using ‘“’) then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

The ARM Instruction Set - ARM University Program - V1.0

Direct functionality of
Block Data Transfer

* When LDM / STM arenot being used to implement stacks, it isclearer to
specify exactly what functionality of the instruction is:

* |.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

* Inorder todothis, LDM / STM support afurther syntax in addition to
the stack one:

e STMIA /LDMIA : Increment After

« STMIB/LDMIB : Increment Before

« STMDA / LDMDA : Decrement After
« STMDB /LDMDB : Decrement Before

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 60

Example: Block Copy

» Copy ablock of memory, which is an exact multiple of 12 words long
from the location pointed to by ri12 to the location pointed to by r13. r14
points to the end of block to be copied.

;, rl2 points to the start of the source data
;, rl4 points to the end of the source data
;, rl3 points to the start of the destination data

| oop LDM A r12!, {r0-r11} : load 48 bytes 3>
STMA 13!, {r0-r11} ; and store them (14 —> \ncreasing
CwvP ri2, ri4 ;, check for the end Memory
BNE | oop ;, and loop until done
r12—»

* Thisloop transfers 48 bytesin 31 cycles
e Over 50 Mbytes/sec at 33 MHz

B POWERED
D ‘

The ARM Instruction Set - ARM University Program - V1.0 61

-
=

Quiz #5

* Thecontentsof registersrOto r6 need to be swapped around thus:
 rO movedintor3
e r1 movedintor4d
e r2 moved intor6
e r3movedintors
e r4 moved into rO
 r5movedintorl
e 6 moved into r2

* Writea segment of code that uses full descending stack operationsto
carry thisout, and hencerequires no use of any other registersfor
temporary storage.

The ARM Instruction Set - ARM University Program - V1.0

Quiz #5 - Sample Solution

STMFD sp!, LDMFD sp!, LDMFD sp!, LDMFD sp!,
{rO-r6} {r3,r4,r6} {r5} {ro0-r2}
old SP > €i‘f>. |
ré re re
rs rs rs

r4 r4 @" r4
r2

ril

ro

ro rs r3 ro r4

r3 = = =
r4 =r1 ri =r5
re =r2 r2 =ro

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Instruction Set

45.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction and the shift
amount is instruction-specified, the PC value will be the address of the instruction plus

8 bytes.
For any register-controlled shift instructions, neither Rn nor Rm may be R15.

Instruction set orthogonality

Instruction set orthogonality is defined by two character-

istics: independence and consistency. An independent in-
struction set does not contain any redundant instructions.
That is, each instruction performs a unique function, and
does not duplicate the function of another instruction.
Also, the opcode/operand relationship is independent
and consistent in the sense that any operand can be used
with any opcode. Ideally, all operands can equally well be
utilized with all the opcodes, and all addressing modes
can be consistently used will all operands. Basically, the
uniformity offered by an orthogonal instruction set makes
the task of compiler development easier. The instruction
set should be complete while maintaining a high degree
of orthogonality.

The orthogonality of an instruction set is
the regularity with which any op-code
(without data-size encoding within the op-
code itself) can be used with any machine-
primitive data-type and addressing mode.
The orthogonality of the instruction set
makes the architecture easy to learn and
program. It reduces the time required to
write programs but may result in lower
code density. Irregularities adversely affect
code-generation efficiency.

Mahadevan Ganapathi & James R. Goodman

Orthogonal An 1nstruction set 1s said to be orthogonal if each choice in the building of an
instructions mstruction 1s independent of the other choices. Since add and subtract are simular
operations, one would expect to be able to use them in similar contexts. If add uses
a 3-address format with register addresses, so should subtract, and in neither case

should there be any peculiar restrictions on the registers which may be used.
An orthogonal mstruction set 1s easier for the assembly language programmer to

learn and easier for the compiler writer to target. The hardware implementation will
usually be more efficient too.

Stephen Byram Furber, “ARM System-on-Chip Architecture”

[loBe4yeTo CbBPEMEHHM MUKPOMNPOLLECOPU
(BKAtoUMTEeNnHOo n ,,ARM“) nmat BUCOKa cTe-
NeH Ha OPTOroHAa/IHOCT Ha cMUcTemaTa Ma-
LUWMWHHU KOMaHAaAW. Ho npun x86 He e TakKa.
Hanpumep npn 8086 ot 06Wo 96 KomaHAU
OPTOroHasiHM ca camo 36. ToBa ce ABAXKU
Ha Npou3xXoda Ha TO3M MUKpornpoLuecop oT
cememncrtsoto 8008/8080/8085 c perncrbp-
akymynatop (A, npesbpHan ce B AL/AX u

pernctposn asoukn BC, DE n HL, npeBbp-
Hanu ce B BH:BL, CH:CL n DH:DL npun 8086).

CtpykTypa Ha MI1: OcHOBHM PYHKUMOHANHM Baokose B MIT.
BbTpewHn wnHn. PaboTta Ha KOHBeWepa.

ODROID-XU4 BLOCK DIAGRAM

Exynos 5422 Application Processor

USB2.0 UsB 2.0 o 2xUSBE 3.0
EHHC

Gigabit Ethernaet Ethernet

Module Socket | i, 1 Controller 10/100/1000

Micra 5D
Slot DC 5V/4a
geriul
Console
Cooling Fan
HDMI
Type—A
/O expansion
FPort — JPEG ENDRS 933 M
(A0pin) Enc/Dac LL-L{ILTJ:d_...t.ll..
1 S201t Z—port .
2 - I/ expansion
14.9Ghbytes/sec I— Part
2GByLe [(12Zpin)
Fal

snq ndyno Ny

ABE AlU:Z25] ALE

l

|

Address Register
(A REG) 26-bit

Incrementer

D{0:31]

DBE D{0:51]

|

DataOut Register
(DOUT) 32-bit

Dataln Reg
(DIMN) 32-bit

ister

Register File
(25 Registers)

I

Instruction Pipe

E- Barrel B bus
n Shifter

Priority
A \/ B Encoder

ALU

Frogram Status
Register (PSR}

- e |
]
]
£
g
3:'_|
er
- .
L
—
-
= -
23l =
=2 o
1] ——
= E
=
Yo
2
=2
m

apod23ag uoildniisuj

e B W\
- R\
. P
 p— 2
4= [RQ
e F1Q)

4+ RESET

e OPC
— | RANS
» MREQ
e M[0: 1]
p— S EQ

ABEA[O:31]ALE D[O:31] DBED[O:31]

| = | l

snq indino nYy

Address Register n DataOut Register Dataln Register
(A REG) 32-bit Ea (DOUT) 32-bit (DIM) 32-bit
I
: % .
E 4= 8l
EH Wiy Instruction Pipe
Register File
(37 Registers)
E{EI GPR + 6 status) ; _ -
Fa s RW
B Booth's EE e 1
= Multiplier — [—02
@ (2- bit) a e IRQ
7 =
Barrel gg O q [T RESET
, Bbus g = ABORT
Shifter R 8 oPC
o TRANS
F'rinrity' zp R MREQ
A \/ B Encoder EE 3 M[0:1
- ® SEQ
ALU == Pl
i CPA
CPB

Instruction Instruction Register Reqgister Shift ALL Reqgister
Fetch Decode Select Read Wite
Fetch Decode Execute

VL86C010

BLOCK DIAGRAM

INSTRUCTION
DECODE
AND
EXECUTION

PIPELINE
INCREMENTER BUS \

PIPELINE
DATAIN ——P»
BUS

ALU OUTPUT BUS

ADDRESS
BUS

ADDRESS
INCRE-
MENT
LOGIC

MEMORY
ADDRESS
REGISTER

FILE

PCBUS

READ PORT B BUS

32 - BIT

REGISTER

MEMORY
DATA

DATA

BARREL BOOTH'S

SHIFTER MULTIPLIER

REGISTER
(READ)

BUS

MEMORY
DATA

REGISTER

READ PORT A BUS

(WRITE)

weoT Crr»

A[31:0] ﬁ

control 5\’ E

address register

P | [
C incremente

register
bank

wnCco @

instruction
decode

&

control

data out register

data in register

1 fetch decode | execute

2 fetch decode | execute
instruction
time

Figure 4.2 |ARM single-cycle instruction 3-stage pipeline operation.

1 h decode | execute

2 ‘fatch STH‘ decode ‘calc. addr.‘ d&taxferl
3 w l decode l execute I

4 ff_ztch ADDI decode | execute I
5 fetch ADD‘ decode ‘ execute I

instruction

> time

Figure 4.3 ARM multi-cycle instruction 3-stage pipeline operation.

PC behaviour One consequence of the pipelined execution model used on the ARM 1s that the pro-
gram counter, which 1s visible to the user as r!5, must run ahead of the current
mstruction. If, as noted above, mstructions fetch the next mstruction but one during
their first cycle, this suggests that the PC must pomt eight bytes (two instructions)
ahead of the current instruction.

This 1s, indeed, what happens, and the programmer who attempts to access the PC
directly through r!'5 must take account of the exposure of the pipeline here. However,
for most normal purposes the assembler or compiler handles all the details.

Even more complex behaviour 1s exposed 1f !5 1s used later than the first cycle of
an mstruction, since the mstruction will itself have incremented the PC during its first
cycle. Such use of the PC 1s not often beneficial so the ARM architecture definition
specifies the result as 'unpredictable' and 1t should be avoided, especially since later
ARMs do not have the same behaviour in these cases.

prms | owmsmsBa

|
[A A BT e R e <
g 2
ssaippe
v
Em%:a eyoea-g a——
%
Tllllllllllll omsom

syyed
Buipsemuoy niv W ﬂ
2)N22x2 4

H

i =
L]

g
£
=
@

a4
spley
aleipawuw
peau Ja)sibal
apooap
UONINAISUL ¥ A N
apooap |

g + od

\Z

NS

P+

od sgNs
od AOW

189

v + od

od
Xau

%

E-ddl'EEE register |

address register

!

data out| [data in out| [data in
[data out]

U

(a) register — register operations

(b) register — immediate operations

Figure 4.5 Data processing instruction datapath activity.

address register

(a) Ist cycle — compute address

*

address rogia-ter

4y

(b) 2nd cycle — store data & auto-index

Figure 4.6 SIR (store register) datapath activity.

(a) Ist cycle — compute branch target

fl)l address ragi;tar

VAN

(b) 2nd cycle — save return address

Figure 4.7 The first two (of three) cycles of a branch instruction.

Figure 1-2 shows:

. the two Fetch stages
. a Decode stage
. an Issue stage

. the four stages of the ARMI1176JZF-S integer execution pipeline.

These eight stages make up the processor pipeline.

Fe1l Fe2 De Iss Sh ALU Sat WBex
1st fetch 2nd fetch Instruction Reg. read Shifter ALU Saturation Writeback
stage stage decode and issue stage operation stage Mul/ALU

MAC1 MAC2 MAC3
1st multiply | (2nd multiply| |3rd multiply
acc. stage acc. stage acc. stage
ADD DC1 DC2 WBIs
Address Data Data Writeback
generation cache 1 cache 2 from LSU

Figure 1-2 ARM1176JZF-S pipeline stages

Fel

Fe2

Iss

Sh
ALU
Sat
WBex
MACI1
MAC2
MAC3
ADD
DC1
DC2
WBIs

First stage of instruction fetch where address is issued to memory and data returns
from memory

Second stage of instruction fetch and branch prediction.
Instruction decode.

Register read and instruction issue.

Shifter stage.

Main integer operation calculation.

Pipeline stage to enable saturation of integer results.
Write back of data from the multiply or main execution pipelines.
First stage of the multiply-accumulate pipeline.

Second stage of the multiply-accumulate pipeline.
Third stage of the multiply-accumulate pipeline.
Address generation stage.

First stage of data cache access.

Second stage of data cache access.

Write back of data from the Load Store Unit.

Fel Fe2 De Iss
Register
1st fetch 2nd fetch Instruction read and
stage stage decode instruction
issue

Common decode pipeline

e

WBex

Base
register
writeback

Ex1 Ex2 Ex3
Sh ALU Sat
) Calculate
Ehlﬁgr writeback Saturation
operation
value
MAC1 MAC2 MAC3
1st 2nd 3rd
multiphy multiply multiply
stage stage stage
ADD DC1 DC2
First stage Second
Data of data stage of
address ch dat ch
calculation cache ala cache
access access
Load miss
waits

ALU
pipeline

Multiply
pipeline

Load/store

pipeline

Hit under

miss

Figure 1-3 Typical operations in pipeline stages

Fel Fe2 De |ss
Register
1st fetch |y 2nd fetch |5 Instruction read and
stage stage decode instruction
issue
R

Common decode pipeline

WBex

Base
register
writeback

WBIs

Ex1 Ex2 Ex3
sh ALU Sat
i Calculate
Shifter » writeback H—{ Saturation
operation value
MAC1 MAC2 MAC3
Not used Not used Not used
ADD DC1 DC2
Not used Not used Not used
Not used

Mot used

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-4 Typical ALU operation

WBex

Base
register
writeback

WBIs

Ex1 Ex2 Ex3
Sh ALU Sat
Fe1 Fe? De lss Mot used Mot used Mot used
Register
1st fetch [y 2nd fetch |y Instruction read and
stage stage decode instruction MAC1 MAC?2 MAC3
issue
1st 2nd 3rd
multiply . multiply multiphy
hd stage stage stage
Common decode pipeline - .
L |
ADD DCA1 DC2
Mot used Mot used Mot used
Mot used

Mot used

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-5 Typical multiply operation

Ex1 Ex2 Ex3
Sh ALU Sat
) Calculate
Fe1 Fe2 De Iss nggr':faén | writeback [— Saturation WBex
value
Register Base
1st fetch [y 2nd fetch |y Instruction read and reqister
stage stage decode instruction MAC1 MAC?2 MAC3 g
issue writeback
Y Mot used Mot used Mot used
Common decode pipeline
ADD DCA1 DC2 WBIs
Data Fir?tdstaga Eacnndf Nriteback
I of data \ stage o ite
c:;::irl::n cache data cache from LSU
access access
Mot used

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-6 Progression of an LDR/STR operation

Fel Fe2 De |ss
Register
1st fetch |y 2nd fetch Instruction read and
stage stage decode instruction
issue

Common decode pipeline

R

Ex1 Ex2 Ex3
Sh ALU Sat
i Calculate
Shifter . i
operation » writeback p Saturation WBeXx
value
Base
MAC1 MAGC?2 MAC3 rgglstar
writeback
Mot used Mot used Mot used
ADD DC1 DC2 WBIs
Data First stage Second
of data stage of Writeback
address — . he [| datacache from LSU
calculation
] access access
Mot used
unless a
miss

OCCurs

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-7 Progression of an LDM/STM operation

Fel Fe2 2 De 3 Iss 4
Register
1st fetch 2nd fetch Instruction read and
stage R stage B decode R instruction
issue
9y)

Common decode pipeline

Ex1 Ex2 Ex3
Sh 5 ALU 6 Sat 7
) Calculate
Shifter . i
operation B writeback | Saturation WRBex 8
value ™~
Base
MAC1 MAC2 MAC3 register
writeback
MNot used Mot used Mot used
ADD 5 DC1 6 DC2 11 WBIs 12
Data First stage Second
| of data \ stage of I Writeback
addrasls cache data cache from LSU
calculation
access access
9,10
Load

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-8 Progression of an LDR that misses

CuctemHa marucrtpana: CMrHann Ha WMHUTEe 3a agpecn n gaHHU. Ynpasnasalim
curdHann. OpraHm3lauma Ha obmeHa Ha gaHHU. Buaose umknn. Bpemegmarpamm.

REFCLKCFG[1:0]

nRW LOCK REFCLK | PLLCFG[&:0]
ABE A[31:0] 4 MAS[1:0] &4 nBLS[3:0] APE TCK TDITMS nTRST TDO MCLK |PCLK PLLSLEEP _propt

T AWAIT l PLLRANGE VSE

) L nMREQ
CLF Address Buffer JTAG Test Clock/PLL SEQ

Internal Address Bus
ABORT

nIRQ

8 kByte Unitied

Write Back /Write nFIQ

Through &
Lockdown Cache
L TESTOUT][4:0]

I TESTMODE

Internal Data Bus

Write
Buffer

Figure 1-1: ARM810 block diagram

Clocks
and PLL
configuration

Interrupts

Bus
Controls

Power

JTAG
Test

PLLSLEEP
HREFCLK
REFCLKCFG[1:0

-

PLLCFG[6:0]

PLLFILT1

PLLFILTZ
PLLRANGE

PCLK
MCLK

nWAIT

AY4

nlRQ

nklQ

nRESET

r~ ABE
DBE

APE
MSE

N

VCC

VDD

V5SS

PLLVDD

PLLVSS

TCK
TDI
DO

TMS

NT

nTHRST

ARM810

=
=

nBW ~
——

MAS“ :D| |

| OCK >

nBLS[3:0] >

nMBEQ ™
—-

SEQ >

ABORT

>y

W
TESTOUT[5:0]
TESTMODE
_
W,

Address
Bus

Data
Bus

Control
Bus

Memory
Interface

Chip
Test

Figure 2-1: ARMB810 functional diagram

Key to signal types:

/ Input
0074 Output, CMOS levels, tristateable
10CZ Input/output tristateable, CMOS levels

ICK Clock input

A[31:0]

ABE

ABORT

APE

CLF

0OCZ

Address Bus. This bus signals the address requested for memory accesses.
Normally it changes during phase 2 of the bus clock. The timing can be changed
using APE.

Address bus enable. When this input is LOW, the address bus A[31:0],
MAS[1:0], CLF, nBLS[3:0], nRW and LOCK are put into a high impedance
state (Note 1).

External abort. Allows the memory system to tell the processor that a requested
access has failed. Only monitored when ARM810 is accessing external memory.

Address pipeline enable control input. When APE is HIGH, address and
address-timed outputs are generated with normal pipeliined timing, where a new
address is generated in the second phase of the bus clock (MCLK HIGH or
PCLK LOW). Taking APE LOW delays these signals by one clock phase so they
change in the first phase of the following bus cycle (MCLK LOW or PCLK
HIGH). See the descriptions for MCLK/PCLK and Chapter 11, ARM810
Clocking for bus clock information. The address-timed signals are A[31:0],
MAS[1:0], nBLS[3:0], CLF, LOCK and nRW.

Cache line fill. CLF HIGH indicates that the current read cycle is cacheable. CLF
Is always HIGH for writes. This signal may be used to indicate to a second level
cache controller that a read is cacheable in the second level cache (if present).

D[31:0]

DBE

LOCK

MCLK

I0OCZ

OCZ

Data bus. These are bi-directional signal paths used for data transfers between
the processor and external memory. For read operations (when hRW is LOW),
the input data must be valid before the falling edge of MCLK. For write
operations (when nRW is HIGH), the output data will become valid while MCLK
Is LOW. At high clock frequencies the data may not become valid until just after
the MCLK rising edge.

Data bus enable. When this input is LOW, the data bus, D[31:0] is put into a high
impedance state (Note 1). The drivers will always be high impedance except
during write operations, and DBE must be driven HIGH in systems which do not
require the data bus for DMA or similar activities.

Locked operation. LOCK is driven HIGH, to signal a “locked” memory access
sequence, and the memory manager should wait until LOCK goes LOW before
allowing another device to access the memory. LOCK remains HIGH during the
locked memory sequence. Normally it changes during phase 2 of the bus clock.
The timing can be changed using APE.

This is a bus clock input. Bus cycles start and end with falling edges of MCLK.
Hold PCLK HIGH to use this clock input. See 11.1.1 External input clock:
MCLK or PCLK on page 11-3 for further details. This signal is provided for
backwards compatibility with previous processors, see PCLK for the preferred
bus clock input.

MSE

MAS[1 0]

nBLS[3:0]

nFIQ

niRQ

OCZ

0oCZ

Memory request/sequential enable. When this input is LOW, the nMREQ and
SEQ outputs are put into a high impedance state (Note 1).

Memory Access Size. An output bus used by the processor to indicate the size of
the next data transfer to the external memory system as being a byte, half word or
full 32 bit word in length. MAS[1:0] is valid for both read and write operations.

Normally it changes during phase 2 of the bus clock.The timing can be changed
using APE.

Not Byte Lane Selects. These signify which bytes of the memory are being
accessed. For a word access all will be LOW. Normally they change during
phase 2 of the bus clock. The timing can be changed using APE.

Not fast interrupt request. If FIQs are enabled, the processor will respond to a
LOW level on this input by taking the FIQ interrupt exception. This is an
asynchronous, level-sensitive input to guarantee that the interrupt has been
taken.,

Not interrupt request. As nFIQ, but with lower priority. If IRQs are enabled, the
processor will respond to a low level on this signal by taking the IRQ interrupt
exception.

nMREQ

nRESET

nRW

nTRST

nWAIT

OCZ

OCZ

Not memory request. A pipelined signal that changes while MCLK is LOW to
indicate whether or not in the following cycle, the processor will be accessing
external memory. When nMREQ is LOW, the processor will be accessing
external memory in the next bus cycle.

Not reset. This is a level sensitive input which is used to start the processor from a
known address. A LOW level will cause the current instruction to terminate
abnormally, and the on-chip cache, MMU, and write buffer to be disabled. When
NRESET is driven HIGH, the processor will re-start from address 0. nRESET
must remain LOW for at least 5 full fast clock cycles or 5 full bus clock cycles

whichever is greater. While nRESET is LOW the processor will perform idle
cycles and nWAIT must be HIGH.

Not read/write. When HIGH this signal indicates a processor write operation;
when LOW, a read. Normally it changes during phase 2 of the bus clock. The
timing can be changed using APE.

Test interface reset. Note this signal does NOT have an internal pullup resistor.
This signal must be pulsed or driven LOW to achieve normal device operation, in
addition to the normal device reset (NnRESET).

Not wait. When LOW this allows extra MCLK cycles to be inserted in memory
accesses. It must change during the LOW phase of the MCLK cycle to be
extended.

PCLK

PLLCFG[6:0]

PLLFILTA
PLLFILT2
PLLRANGE

PLLSLEEP

PLLVDD

I0OCZ

This is an inverted bus clock input. Bus cycles start and end with rising edges of
PCLK. Hold MCLK LOW to use this clock input. See 11.1.1 External input
clock: MCLK or PCLK on page 11-3 for further information. We recommend
using this bus clock input for compatibility with the new generations of
synchronous memory systems (SSRAM, SDRAM) and future ARM
microprocessors. The MCLK input is provided for compatibility with earlier ARM
processors.

Phase locked loop configuration input. Please refer to 11.3.2 Fast clock from the
output of the PLL on page 11-7 for further details.

Analog filter pin for PLL.
Analog filter fast start pin for PLL.

In normal operation, an input which selects the PLL output frequency range.
Please refer to 11.3.2 Fast clock from the output of the PLL on page 11-7 for
further details. This pin is also used as an output when the device is in some test

modes. The output driver is guaranteed to be high-impedance if the TESTMODE
pin is LOW.

When HIGH, this puts the PLL into low power sleep mode. Please refer to 11.5
Low Power Idle and Sleep on page 11-10 for further details.

VDD supply for analog components in PLL. 1 pin. Should be appropriately
Isolated from digital noise on supply.

PLLVSS
REFCLK

REFCLKCFG[1:0]

SEQ

TESTMODE
TESTOUT[4:0]

TCK

IOCZ

OCZ

Ground supply for analog components in PLL. 1 pin.

Clock input which is divided by the prescaler to provide the PLL reference clock.
REFCLK can also be configured to a direct source of the internal fast clock,
bypassing the PLL. Please refer to 11.3.2 Fast clock from the output of the
PLL on page 11-7 and 11.3.3 Fast clock direct (bypassing the PLL) on page
11-8 for further details.

In normal operation, an input which selects the divide ratio for the PLL reference
clock prescaler on the REFCLK input. Please refer to 11.3.2 Fast clock from
the output of the PLL on page 11-7 for further details. These pins are also used
as an output when the device is in some test modes. The output drivers are
guaranteed to be high-impedance if the TESTMODE pin is LOW.

Sequential address. This signal is the inverse of NMREQ, and is provided for
compatibility with existing ARM memory systems.

This signal must be tied LOW.

This bus should be left unconnected. These outputs will be driven LOW except
when device test features are enabled. They will not be tri-stated, except via the
JTAG test port.

Test interface reference Clock. This times all the transfers on the JTAG test
interface.

TDI

TDO

TMS

VCC

VDD
VSS

OCZ

Test interface data input. Note this signal does not have an internal pullup
resistor.

Test interface data output. Note this signal does not have an internal pullup
resistor.

Test interface mode select. Note this signal does not have an internal pullup
resistor.

Pad voltage reference. 1 pin is allocated to VCC. This should be tied to the
system power supply, ie. 5V in a TLL system or 3.3V in a 3.3V system. See
Appendix A, Use of the ARM810 ina 5V TTL System.

Positive supply. 15 pins are allocated to VDD in the 144 TQFP package.

Ground supply. 15 pins are allocated to VSS in the 144 TQFP package.

22.00

A
Y

20.00 View from above
-
Pin 144 Pin 109
UL L L T T A
Pinl — — APin108
— ARMS810 =
= = | o
= = |2 I
— = |2 =
Pin 36 = — Pin 73
R Y
Pin 37 Pin 72
0.5typ - -
L4 .
-
=l S
= —
=
W
—
Y /
Y 1 1 [
S

0.22

Pin Signal

1 MSE

2 SEQ

3 NMREQ

4 HEFCLKCFG[O]
5 REFCLKCFG[1]
6 Vdd_core
7 PLLSLEEP
8 \'s5_core

9 PLLRANGE
10 PLLVDD
11 PLLFILT2
12 PLLFILTH
13 PLLGMND
14 NWAIT

15 REFCLK
16 Vdd_pad
17 PCLK

18 MCLK

19 Vss_pad
20 DEE

21 D[0]

22 D[1]

23 D[2]

24 D3]

25 D[4]

26 D[=]

27 D[E]

28 Vdd_pad
29 D[7]

Pin Signal
30 Vss_pad
31 Di&]

32 D9l

33 D{10]
94 D[11]
35 D[12]
36 D{13]
37 D[14]
28 D[15]
39 D{16]
A0 Vdd_pad
41 D[17]
42 Vss_pad
43 D[18]
44 D{19]
45 Vdd_core
46 D[20]
47 V55 _core
48 D[21]
49 D{22]
a0 D[23]

51 D[24]
52 vdd_pad
53 D{25]
54 Vss_pad
55 D[26]
56 D[27]
57 D{28]
58 D{29]

Pin Signal
59 D{30]

60 D[31]

61 TDO

62 TCK
TMS

64 nTHRST
65 TDI

66 Vdd_pad
67 NBLS[0]
68 Vss_pad
69 NBLS[1]
70 NBLS[2]
71 NBLS[3]
f2 NRW

73 MAS[O]
74 MAS[1]
[& CLF

76 LOCK
7 Al0]

78 Al1]

79 Vdd_pad
ao Al2]

81 Vss_pad
82 Al3]

a3 Al4]

84 Vdd_core
a5 Al5]

86 V55 _core
87 AlE]

Pin

Signal

88
89
90
9
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Al7]

Alg]
Vdd_pad
Al9]
Vss_pad
A[10]
A[11]
A[12]
Vdd_core
A[13]
Vss_core
A[14]
A[15]
A[16]
Vdd_pad
A[17]
Vss_pad
A[18]
A[19]

Pin

Signal

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

A[20]
A[21]

Al22]

A[23]

A[24]

A[25]

A[26]
Vdd_pad
Al27]
Vss_pad
A[28]

A[29]

A[30]

A[31]

ABE

APE

Vce
TESTOUT[O]
TESTOUT[1]

Pin Signal

126 Vdd_core
127 TESTOUT[2]
128 Vss_core
129 TESTOUT[3]
130 TESTOUT[4]
131 TESTMODE
132 NIRQ

133 Vdd_pad
134 NRESET
135 Vss_pad

136 NFIQ

137 ABORT

138 PLLCFGJ0]
139 PLLCFG[1]
140 PLLCFG][2]
141 PLLCFG[3]
142 PLLCFG[4]
143 PLLCFG[5]
144 PLLCFG]6]

10.20Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle one instruction may be using the data path while the next is being
decoded and the one after that is being fetched. For this reason the following table
presents the incremental number of cycles required by an instruction, rather than the
total number of cycles for which the instruction uses part of the processor. Elapsed
time (in cycles) for a routine may be calculated from these figures which are shown in
CTable 10-22: ARM instruction speed summary on page 10-20. These figures assume
that the instruction is actually executed. Unexecuted instructions take one cycle.

n Is the number of words transferred

mis 1 if bits [32:8] of the multiplier operand are all zero or one.
2 if bits[32:16] of the multiplier operand are all zero or one.
3if bits[31:24] of the multiplier operand are all zero or all one.
4 otherwise.

b is the number of cycles spent in the coprocessor busy-wait loop.

If the condition is not met all the instructions take one S-cycle. The cycle types N, S,
I, and C are defined in CChapter 6, Memory Interface.

Instruction

Cycle count

Additional

Data Processing

MSR, MRS
LDR
STR
LDM
STM
SWP
B,BL
SWI, trap
MUL
MLA
MULL
MLAL
CDP
LDC,STC
MCR
MRC

15

1S
1S+1N+11
2N
NS+1N+11
(n-1)S+2N
1S+2N+11
25+1N
25+1N
1S+ml
1S+(m+1)l
1S+(m+1)l
1S+(m+2)l
1S+bl

(n-1)S+2N+bl

TN+bl+1C

1S+(b+1)l+1C

+ 11
+1S+ 1N

+1S+ 1N

+1S+ 1N

for SHIFT(Rs)
it H15 written

it H15 loaded

it H15 loaded

Table 10-22: ARM instruction speed summary

6.2

Cycle Types

All memory transfer cycles can be placed in one of four categories:

1 Non-sequential cycle. ARM7TDMI requests a transfer to or from an address
which is unrelated to the address used in the preceding cycle.

2 Sequential cycle. ARM7TDMI requests a transfer to or from an address which
Is either the same as the address in the preceding cycle, or is one word or
halfword after the preceding address.

3 Internal cycle. ARM/7TDMI does not require a transfer, as it is performing an
internal function and no useful prefetching can be performed at the same time.

4 Coprocessor register transfer. ARM7TDMI wishes to use the data bus to
communicate with a coprocessor, but does not require any action by the
memory system.

These four classes are distinguishable to the memory system by inspection of the
NMREQ and SEQ control lines (see C Table 6-1: Memory cycle types). These control
lines are generated during phase 1 of the cycle before the cycle whose characteristics
they forecast, and this pipelining of the control information gives the memory system
sufficient time to decide whether or not it can use a page mode access.

nMREQ SEQ Cycle type

0 0 Non-sequential (N-cycle)
0 1 Sequential (S-cycle)

1 0 Internal (l-cycle)

Coprocessor register transfer (C-cycle)

Table 6-1: Memory cycle types

Bus Interface Signals

Note

The signals in the Bus interface can be grouped into 3 categories:

Addressing signals:
A[31:0]
nRW
MAS[1:0]
LOCK
nBLS[3:0]]
CLF

Memory Request signals:

nMREQ
SEQ

Data sampled signals:
D[31:0]

Abort signal:
ABORT

Each of these groups shares a common timing relationship to the bus interface cycles.
The ARM bus interface addressing signals and memory request signals are pipelined
ahead of the data. nMREQ and SEQ are pipelined by a whole bus cycle, and the

address timed signals by 1/2 a cycle. The timing of the address timed signal can be
altered by the APE pin.

Unless otherwise specified, all diagrams in this chapter show the ARM810 operating
with the APE pin held HIGH.

A[31:0]

Request

D[31:0] > < >

+——|dle Cycle —*|+— Memory Cycle —+|+——Idle Cycle —

Figure 12-1: Simplified single cycle access

A[31:0] Address X Address+4 X

nMREQ Request 2 /

D[31:0] - X > .

<—|dle Cycle —|-Memory Cycle :|~Memory Cycle :|+—Idle Cycle —

Figure 12-2: Simplified sequential access

A[31:0]

Tah_"'

nRW, MAS[1:0]

Tah_"'

U L/

|‘_ Tmsh— |‘_

Idle Cycle Memory Cycle Idle Cycle

D[31:0] (Write)

D[31:0] (Read)

Figure 12-3: Single word read or write

MCLK

A[31:0]

nRW, MAS[1:0]

nMREQ

D[31:0] (Write)

D[31:0] (Read)

|X7 Addr >< >< Addr+4 K
T agar— Tan—
Taddr_"' %’ Tah_"' X’
Tmsd_"' I‘_ Tmsh_" |‘_
+—— |dle Cycle > |4 Memory Cycle —» |+—Memory Cycle > |- Idle Cycle ——»
— ET Taon **
Tdc-ut_" = ° ™ "_sz
} ______________________ } _________ < N
. |/
e - = Tgin

Figure 12-4: Two word sequential read or write

A[31:0] Address 1 (Buffered Write) X >< Admesszme'adj

B

ah ™™

ah™™

LNV VA O .

«+— |dle Cycle «— Mem. Cycle —» | «— Idle Cycle —» | +— Mem. Cycle —» Idie Cycle

D[31:0] ><>

Figure 12-5: Minimum interval between bus accesses

MAS[1:0] is encoded as follows:

MAS bit 1 bit 0 Access size
0 0 byte

0 1 halfword

1 0 word

reserved, not used

Table 12-1: MAS encoding

A[31:0]

T addrz ™

nRW, MAS[1:0]

T addrz

wwe [07 |0 1/

Tmsd_' Tmsh_"

| «———Idle Cycle Memory Cycle

D[31:0] (Write)

|
|
|
D[31:0] (Read) |
|
|

FASTBUS HI'LI'iH, ALE LOW

Figure 12-6: Single word read or write with delayed addressing

Little-endian scheme

Databus Bits

Higher Address 31 16 15 Word Address

Lower Address

+ Least significant byte is at lowest address

Figure 12-12: Little-endian addresses of bytes within word

Big-endian scheme

Databus Bits

Higher Address 16 15 Word Address

Lower Address

Most significant byte is at lowest address

Figure 12-14: Big-endian addresses of bytes within words

MASI1:01]
Indicates

Word
Halfword

Byte

Reserved

Memory Read/Write the Byte on

MASHLL | MASIOL AL ALD! D[31:24] DI[23:161] DI15:8] DI7:01]
1 0 X X Yes Yes Yes Yes
0 1 0 X No No Yes Yes

1 X Yes Yes No No
0 0 0 0 No No No Yes

0 1 No No Yes No

1 0 No Yes No No

1 1 Yes No No No
1 1 X X Yes Yes Yes Yes

Table 12-4: Decoding Byte Activity for little-endian system.
Notes X means “don't care”.

MAS[1:0] = 71 is Reserved for future use, it is never used by ARM810.

The Byte Activity Decode indicated is recommended for compatibility with future ARM
Microprocessors.

MASI1:01
Indicates

Word
Halfword

Byte

Reserved

Memory Read/Write the Byte on

MASHT | MASIOL ALl ALD! DI[31:24] DI[23:16] DI[15:81 DIL7:01
1 0 X X Yes Yes Yes Yes
0 1 0 X Yes Yes No No

1 X No No Yes Yes
0 0 0 0 Yes No No No

0 1 No Yes No No

1 0 No No Yes No

1 1 No No No Yes
1 1 X X Yes Yes Yes Yes

Table 12-5: Decoding Byte Activity for big-endian system.
Notes X means “don't care”.

MASI[1:0] = 77 is Reserved for future use, it is never used by ARM810.

The Byte Activity Decode indicated is recommended for compatibility with future ARM
Microprocessors.

CP15 Control MAS[1:0] A[1:0] nBLS
Register B Bit
O (Little-endian) | 1 0 (Word) X X 0000
0 01 (Halfword) | 0 X 1100
0 0 1 1 X 0011
0 0 O (Byte) 00 1110
0 00 01 1101
0 00 10 1011
0 00 11 0111
1 (Big-endian) 1 0 (Word) X X 0000
01 (Halfword) | O X 0011
0 1 1 X 1100
0 O (Byte) 00 0111
00 01 1011
00 10 1101
00 11 1110

Table 12-6: nBLS|[3:0] as a function of B, MAS[1:0] and A[1:0]

Signal When Low, enable read or
write of byte connected to data
bus bits

nBLS[0] D[7:0]

nBLS[1] D[15:8]

nBLS[2] D[23:16]

nBLS[3] D[31:24]

Table 12-7: nBLS[3:0] and Bytes of memory system

D[31:0] (Write)

D[31:0] (Read)

Figure 12-15: Two single word non-sequential unbuffered accesses

Tah_"

B

L/

<+— |dle Cycle —»

-+ Mem. Cycle »

\/

«+— |dle Cycle —»

0

Tah_"‘

L/

<+— |dle Cycle —»

«+ Mem. Cycle »

\/

<+— |dle Cycle —»

A[31:0] Address 1 X X Address 2

HMRigil:D] I X X

Tah_"'

MIREQ (VAN //

+— Idle Cycle —» |«—Mem. Cycle —» | «— Idle Cycle — [«+— Mem. Cycle —» |+— Idle Cycle —»

D[31:0] (Write) >— -------- _ t @] .<
- = Tgelgon™

Tdout_"

Figure 12-16: Two single word non-sequential buffered writes

A[31:0] }D(

TEl

nRW, X:){
MAS[1:0]
Ta

s A I

Tmsh_"'

«|dle Cycle = |<«Mem. Cycle » |« Mem. Cycle » | «Mem. Cycle » |« Mem. Cycle » | <+ Idle Cycle |+ |dle Cycle »

\

D[31:0] (Read) !

Figure 12-17: Linefetch

YCTPOMCTBO 33 NaaBalla 3aneTtaa: KoHBenepu 3a YMHOXKEHUE U HAaTPynBaHe, AeNeHe U
KOpPEeHYBaHe 1 3apexaaHe N cbxpaHeHune. Pexkxnmun. ObpaboTKa Ha KbCU BEKTOPMU.
Pernctpos ¢ann. Nporpamen mogen. Komangn. NU3kntoyeHms.

The VFPI11 coprocessor has three separate instruction pipelines:
. the Multiply and Accumulate (FMAC) pipeline

. the Divide and Square root (DS) pipeline

. the Load/Store (LS) pipeline.

Each pipeline can operate independently of the other pipelines and in parallel with
them. Each of the three pipelines shares the first two pipeline stages, Decode and Issue.
These two stages and the first cycle of the Execute stage of each pipeline remain in
lockstep with the ARM11 pipeline stage but effectively one cycle behind the ARMI 1
pipeline. When the ARM11 processor is in the Issue stage for a particular VFP
instruction, the VEP11 coprocessor is in the Decode stage for the same instruction. This
lockstep mechanism maintains in-order 1ssue of instructions between the ARM1 |
processor and the VFP11 coprocessor.

Decode Issue

Read
port Fn

Load
forward

DS
forward

Read
port Fn

Read
port Fm

Read
port Fm

Read
port Fd

To
register file

E1

OPC

Exception
detect

-

Zero
detect

i OPB

Multiply

Exception
detect

Zero
detect

OPA '

Exception
detect

Zero
detect

A
operand
Inversion

E3

éF‘rﬂduct

I

| <
Y
S
™

Sum

Align :

FMAC short writeback path

E4 E5 !E6: E7 | E8 ! WB

Product
round

Round Result

: select ;

N

i i -
hlilinle

special
results

Normalize

FMAC full writeback path

Figure 1-1 FMAC pipeline

Issue Execute 1 Execute 2 Execute 3 Execute 4 WB
. Dividend : : | | |
Read _ N ~ Partial

port Fm ﬂ remainder/radicand

Load |~
forward

FMAC Divisor/ |
forward

<&

Zero
detect

/ N\

radicand Sign .
: Final

| v . . result
| Divisor/root multiple select

—p M ™ Special results: -

REIE:Id o ~ " Normalize |
port Fn ' — /]
| X D -

’ Next Next root

quotient/ multiples
root
selection

Increment :

To
register
file

Figure 1-2 DS pipeline

Fetch Decode Issue Execute Memory 1 Memory 2 Writeback

Read
-.H port Fn

DS forward ;
; FMAC forward
_Fﬁﬂead Load forward

.port Fm

Register
file: read
and
format

CPINSTR Register Ed | Read
(instruction = address APE-D Tlerts port Fd DS writeback
bus) generation : FMAC writeback :

Load data bus

e Register

| | Store
Store g | | R
j—b —pj—y data file: v;rlte
bus an
format
Load ‘? ﬂ ﬂ

muxes
Figure 1-3 LS pipeline

The VFPI11 coprocessor provides full IEEE 754 standard compatibility through a
combination of hardware and software. There are rare cases that require significant
additional compute time to resolve correctly according to the requirements of the IEEE
754 standard. For instance, the VFP11 coprocessor does not process subnormal input
values directly. To provide correct handling of subnormal inputs according to the IEEE
754 standard, a trap 1s made to support code to process the operation. Using the support
code for processing this operation can require hundreds of cycles. In some applications
this 1s unavoidable, because compliance with the IEEE 754 standard is essential to
proper operation of the program. In many other applications, strict compliance to the
IEEE 754 standard is unnecessary, while determinable runtime, low interrupt latency,
and low power are of more importance. To accommodate a variety of applications, the
VFEPI11 coprocessor provides four modes of operation:

. Full-compliance mode
. Flush-to-zero mode on page 1-14

. Default NaN mode on page 1-14
. RunkFast mode on page 1-15.

Flush-to-zero mode

Setting the FZ bit, FPSCR|24], enables flush-to-zero mode and increases performance
on very small inputs and results. In flush-to-zero mode, the VFP11 coprocessor treats
all subnormal input operands of arithmetic CDP operations as positive zeros in the
operation. Exceptions that result from a zero operand are signaled appropriately. FABS,
FNEG, FCPY, and FCMP are not considered arithmetic CDP operations and are not
affected by flush-to-zero mode. A result that is 7iny, as described in the IEEE 754
standard, for the destination precision is smaller in magnitude than the minimum
normal value before rounding and is replaced with a positive zero. The IDC flag,

FPSCR][7]. indicates when an input flush occurs. The UFC flag, FPSCR[3], indicates

when a result flush occurs.

Default NaN mode
Setting the DN bit, FPSCR]25], enables default NaN mode. In default NaN mode, the

result of any operation that involves an input NaN or generated a NaN result returns the
default NaN. Propagation of the fraction bits is maintained only by FABS, FNEG, and
FCPY operations, all other CDP operations ignore any information in the fraction bits
of an input NaN. See NaN handling on page 3-5 for a description of default NaNs.

RunFast mode

RunFast mode 1s the combination of the following conditions:

the VFPI11 coprocessor is in flush-to-zero mode
the VFP11 coprocessor 1s in default NaN mode
all exception enable bits are cleared.

In RunFast mode the VFPI1 coprocessor:

processes subnormal input operands as positive zeros

processes results that are finy before rounding, that is, between the positive and
negative minimum normal values for the destination precision, as positive zeros

processes input NaNs as default NaNs

returns the default result specified by the IEEE 754 standard for overflow,
division by zero, invalid operation, or inexact operation conditions fully in
hardware and without additional latency

processes all operations in hardware without trapping to support code.

RunFast mode enables the programmer to write code for the VFP11 coprocessor that
runs in a determinable time without support code assistance, regardless of the
characteristics of the input data. In RunFast mode, no user exception traps are available.
However, the exception flags in the FPSCR register are compliant with the IEEE 754
standard for Inexact, Overftlow, Invalid Operation, and Division by Zero exceptions.
The underflow flag is modified for flush-to-zero mode. Each of these flags is set by an
exceptional condition and can by cleared only by a write to the FPSCR register.

Short vector instructions

The VFPv2 architecture supports execution of short vector instructions of up to eight
operations on single-precision data and up to four operations on double-precision data.
Short vectors are most useful in graphics and signal-processing applications. They
reduce code size, increase speed of execution by supporting parallel operations and
multiple transfers, and simplify algorithms with high data throughput.

Short vector operations issue the individual operations specified in the instruction in a
serial fashion. To eliminate data hazards, short vector operations begin execution only
after all source registers are available, and all destination registers are not targets of
other operations.

About the register file

The VFP11 register file contains thirty-two 32-bit registers organized in four banks.
Each register can store either a single-precision floating-point number or an integer.

Any consecutive pair of registers, [Revent1]:[Reven], can store a double-precision
floating-point number. Because a load and store operation does not modify the data, the
VFPI11 registers can also be used as secondary data storage by another application that
does not use floating-point values.

The register file can be configured as four circular buffers for use by short vector
instructions in applications requiring high data throughput, such as filtering and
graphics transforms. For short vector instructions, register addressing is circular within
each bank. Load and store operations do not circulate, allowing for multiple banks, up
to the entire register file, to be loaded or stored in a single instruction. Short vector
operations obey certain rules specifying under what conditions the registers in the
argument list specify circular buffers or single-scalar registers. The LEN and STRIDE
fields in the FPSCR register specify the number of operations performed by short vector
instructions and the increment scheme within the circular register banks. Further
information and examples are in Section C5 of the ARM Architecture Reference
Manual.

Figure 2-1 shows the single-precision bit fields.

31 30 23 22 0

S Exponent Fraction

Figure 2-1 Single-precision data format

The single-precision data format contains:
. the sign bit, bit [31]

. the exponent, bits [30:23]

. the fraction, bits [22:0].

Single-precision format

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the
following format:

31 30 23 22 0

exponent fraction

The value represented depends primarily on the exponent field:

. If 0 < exponent < OxFF, the value is a normalized number and is equal to:
-15 x 2exponent—127 » (] fraction)
The mantissa of the value is the number [.fraction, consisting of:
— I
— a binary point
— the 23 fraction bits.

The mantissa therefore lies in the range 1 < mantissa < 2 and is a multiple of 2-23,

The unbiased exponent of the value is the power to which 2 is raised in this formula. In this case, it
is (exponent—127).

The minimum positive normalized number is 2-126_ or approximately 1.175 x 1038, The maximum
positive normalized number is (2—2-23) x 2127 or approximately 3.403 x 1038,

Double-precision
MSW

Double-precision
LSW

31 30 20 19

Double-precision format has a Most Significant Word (MSW) and a Least Significant
Word (LSW). Figure 2-2 shows the double-precision format.

S

Exponent Fraction, upper 20 bits

Fraction, lower 32 bits

Figure 2-2 Double-precision data format
The MSW contains:
. the sign bit, bit [31]
. the exponent, bits [30:20]
. the upper 20 bits of the fraction, bits [19:0].

The LSW contains the lower 32 bits of the fraction.

63 0
39— | _— b0 —— | 33— 0
S D" S0
S3 D2 S2
S5 D3 sS4
S7 D4 S6
S9 D5 S8
S11 D6 S10
S13 D7 S12
S15 D8 S14
$17 D9 S16
S19 D10 S18
S21 D11 S20
S23 D12 S22
S25 D13 S24
S27 D14 S26
S29 D15 S28
S31 - - S30

Figure 2-3 Register file access

S1 S0 DO
S3 52 D1
S5 S4 D2
ST S6 D3
S9 S8 D4
S11 S10 D5
S13 512 D6
S15 S14 D7
overlapped with
S17 S16 D8
S19 S18 D9
S21 520 D10
S23 522 D11
S25 524 D12
S27 S26 D13
S29 528 D14
S31 530 D15

Figure C2-1 VFP general-purpose registers

About register banks

As Figure 2-4 shows, the register file is divided into four banks with eight registers in
each bank for single-precision instructions and four registers per bank for

double-precision instructions. CDP instructions access the banks in a circular manner.
Load and store multiple instructions do not access the registers in a circular manner but

treat the register file as a linearly ordered structure.

See ARM Architecture Reference Manual, Part C for more information on VFP

addressing modes.

Bank O Bank 1
I |
S0 S8
D4 <

S1 P S9

S2 S10
D5 <

S3 } S11

S4 S12
D6 =

S5 } S13

S6 S14
D7 =

ST \ 515

D8

D9

D10

D11

Bank 2

516

S17

518

519

S20

521

S22

523

Bank 3

S24
525
S26
S27
S28
S29
S30
S31

‘

Figure 2-4 Register banks

D12 <

D13 <

D14 <

D15 <

A short vector CDP operation that has a source or destination vector crossing a bank
boundary wraps around and accesses the first register in the bank.

System registers

A VFP implementation contains three or more special-purpose system registers:

The Floating-point System ID register (FPSID) is a read-only register whose value indicates which
VFP implementation is being used. See FPSID on page C2-22 for details.

The Floating-point Status and Control register (FPSCR) is a read/write register which provides all
user-level status and control of the floating-point system. See FPSCR on page C2-23 for details of
the FPSCR.

The Floating-point Exception register (FPEXC) is a read/write register, two bits of which provide
system-level status and control. The remaining bits of this register can be used to communicate
exception information between the hardware and software components of the implementation, in a
SUB-ARCHITECTURE DEFINED manner. See FPEXC on page C2-27 for details of the FPEXC.

Individual VFP implementations can define and use further system registers for the purpose of
communicating between the hardware and software components of the implementation, and for other
IMPLEMENTATION DEFINED control of the VFP implementation. All such registers are
SUB-ARCHITECTURE DEFINED. They must not be used outside the implementation itself, except as
described in sub-architecture-specific documentation.

Table C3-1 VFP data-processing primary opcodes

Instruction name

Instruction name

P q cp_num=10 cp_num=11 Instruction functionality
0 0 FMACS FMACD Fd =Fd + (Fn * Fm)
0 0 FNMACS FNMACD Fd = Fd - (Fn * Fm)
0 0 FMSCS FMSCD Fd =-Fd + (Fn * Fm)
0 0 FNMSCS FNMSCD Fd =-Fd - (Fn * Fm)
0 1 FMULS FMULD Fd =Fn * Fm

0 1 FNMULS FNMULD Fd = -(Fn * Fm)

0 1 FADDS FADDD Fd = Fn + Fm

0 1 FSUBS FSUBD Fd =Fn - Fm

1 0 FDIVS FDIVD Fd =Fn/Fm

1 0 - - UNDEFINED

1 0 - - UNDEFINED

1 0 - - UNDEFINED

11 - - UNDEFINED

11 - - UNDEFINED

11 - - UNDEFINED

See Table C3-2 on
page C3-4

See Table C3-2 on
page C3-4

Extension instructions

Table C3-2 VFP data-processing extension opcodes

Extension opcode Instruction name

Fn N cp_num=10 cp_num=11 Instruction functionality

0000 0 FCPYS FCPYD Fd =Fm

(000 1 FABSS FABSD Fd = abs(Fm)

0001 0 FNEGS FNECD Fd =-Fm

0001 1 FSORTS FSORTD Fd = sqrt(Fm)

001 x X - - UNDEFINED

0100 0 FCMPS FCMPD Compare Fd with Fm, no exceptions on guiet NaNs

0100 1 FCMPES FCMPED Compare Fd with Fm, with exceptions on quiet NaNs

0101 0 FCMPZS FCMPZD Compare Fd with 0, no exceptions on quiet NaNs

0101 1 FCMPEZS FCMPEZD Compare Fd with 0, with exceptions on quiet NaNs

0110 X - - UNDEFINED

0111 0 - - UNDEFINED

0111 1 FCVTDS FCVTSD Single «» double-precision conversions

1000 0 FUITOS FUITOD Unsigned intepger — floating-point conversions

1000 1 FSITOS FSITOD Signed integer — floating-point conversions

1001 X - - UNDEFINED

101x X - - UNDEFINED

1100 0 FTOUIS FTOUID Floating-point — unsigned integer conversions

1100 1 FTOUIZS FTOULZD Floating-point — unsigned integer conversions, RZ
mode

1101 0 FTOSIS FTOSID Floating-point — signed integer conversions

1101 1 FTOSIZS FTOSIZD Floating-point — signed integer conversions, RZ mode

111x X - - UNDEFINED

Floating-point exceptions
The IEEE 754 standard specifies five classes of floating-point exception:

Invalid Operation exception

This exception occurs in various cases where neither a numeric value nor an infinity is a
sensible result of a floating-point operation, and also when an operand of a floating-point
operation is a signaling NaN. For more details of Invalid Operation exceptions, see NaNs on
page C2-5.

Division by Zero exception

This exception occurs when a normalized or denormalized number is divided by a zero.

Overtlow exception

This exception occurs when the result of an arithmetic operation on two floating-point
values is too big in magnitude for it to be represented in the destination format without an
unusually large rounding error for the rounding mode in use.

More precisely, the ideal rounded resulf of a floating-point operation is defined to be the
result that its rounding mode would produce if the destination format had no limits on the
unbiased exponent range. If the ideal rounded result has an unbiased exponent too big for
the destination format (that is, >127 for single-precision or >1023 for double-precision), it
differs from the actual rounded result, and an Overflow exception occurs.

Underflow exception

The conditions for this exception to occur depend on whether Flush-to-zero mode is being
used and on the value of the Underflow exception enable (UFE) bit (bit] 11] of the FPSCR).

It Flush-to-zero mode is not being used and the UFE bit is O, underflow occurs if the result
before rounding of a floating-point operation satisfies 0 < abs(result) < MinNorm, where
MinNorm = 2-126 for single precision or 2-1922 for double precision, and the final result is
inexact (that is, has a different value to the result before rounding).

It Flush-to-zero mode is being used or the UFE bit is 1, underflow occurs if the result before
rounding of a floating-point operation satisfies 0 < abs(result) < MinNorm, regardless of
whether the final result 1s inexact or not.

An underflow exception that occurs in Flush-to-zero mode is always treated as untrapped,
regardless of the actual value of the UFE bit. For details of this and other aspects of
Flush-to-zero mode, see Flush-to-zero mode on page C2-14.

Note

The IEEE 754 standard leaves two choices open in its definition of the Underflow exception.
In the terminology of the standard, the above description means that the VFP architecture
requires these choices to be:

. the before rounding form of tininess

. the inexact result form of loss of accuracy.

Tininess is detected betore rounding in Flush-fo-zero mode.

Inexact exception

The result of an arithmetic operation on two floating-point values can have more significant

bits than the destination register can contain. When this happens, the result is rounded to a
value that the destination register can hold and is said to be inexact.

The inexact exception occurs whenever:

. a result is not equal to the computed result before rounding

. an untrapped Overflow exception occurs

. an untrapped Underflow exception occurs, while not in Flush-to-zero mode.
Note

The Inexact exception occurs frequently in normal floating-point calculations and does not

indicate a significant numerical error except in some specialized applications. Enabling the
Inexact exception can significantly reduce the performance of the coprocessor.

The VFEP architecture specifies one additional exception:

Input Denormal exception

This exception occurs only in Flush-to-zero mode, when an input to an arithmetic operation
is a denormalized number and treated as zero.

This exception does not occur for non-arithmetic operations, FABS, FCPY, FNEG, as described
in Copy, negation and absolute value instructions on page C3-13.

Glossary

Rounding mode

The IEEE 754 standard requires all calculations to be performed as if to an infinite
precision. For example, a multiply of two single-precision values must accurately
calculate the significand to twice the number of bits of the significand. To represent this
value in the destination precision, rounding of the significand is often required. The
IEEE 754 standard specifies four rounding modes.

In round-to-nearest mode, the result is rounded at the halfway point, with the tie case
rounding up if it would clear the least significant bit of the significand, making it even.
Round-towards-zero mode chops any bits to the right of the significand, always
rounding down, and is used by the C, C4++, and Java languages in integer conversions.
Round-towards-plus-infinity mode and round-towards-minus-infinity mode are used in
interval arithmetic.

NaN Not a number. A symbolic entity encoded 1n a floating-point format that has the
maximum exponent field and a nonzero fraction. An SNaN causes an invalid operand
exception if used as an operand and a most significant fraction bit of zero. A QNaN
propagates through almost every arithmetic operation without signaling exceptions and
has a most significant fraction bit of one.

Signaling NaNs
Cause an Invalid Operation exception whenever any floating-point operation receives a signaling NaN as an
operand. Signaling Nans can be used in debugging, to track down some uses of uninitialized variables.

Quiet NaN
Is a NaN that propagates unchanged through most floating-point operations.

N3KAtoYeHUA N NpeKkbeBaHUA: V3KatoueHunA. HDEK'bCBaHMH — BNAoBe U BPb3KA C

pexummte Ha MI1. Tabnanua Ha BEKTOPUTE HA U3K/IKOYEHUATA U MPEKDBCBAHMATA.
HavanHo yctaHoBABaHe Ha MII.

Exceptions are generated by internal and external sources to cause the processor

to handle an event; for example, an externally generated interrupt, or an attempt to
execute an undefined instruction. The processor state just before handling the exception
must be preserved so that the original program can be resumed when the exception
routine has completed. More than one exception may arise at the same time.

ARM supports 7 types of exception and has a privileged processor mode for each type
of exception. Table 2-3: Exception processing modes lists the types of exception and

the processor mode that is used to process that exception. When an exception occurs
execution is forced from a fixed memory address corresponding to the type of exception.

These fixed addresses are called the Hard Vectors.

The reserved entry at address 0x14 is for an Address Exception vector used when the
processor Is configured for a 26-bit address space. See Chapter 5, The 26-bit

Architectures for more information.

Exception type Mode Vector address
Reset SVC 0x00000000
Undefined instructions UNDEF | 0x00000004
Software Interrupt (SWI) SVC 0x00000008
Prefetch Abort (Instruction fetch memory abort) ABORT | 0x0000000c
Data Abort (Data Access memory abort) ABORT | 0x00000010
IRQ (Interrupt) IRQ 0x00000018
FIQ (Fast Interrupt) FIQ 0x0000001c

Table 2-3: Exception processing modes

When taking an exception, the banked registers are used to save state. When an
exception occurs, these actions are performed:

Rl4 <exception mode> = PC
SPSR <exception mode> = CPSR
CPSR[5:0] = Exception mode number

CPSR[6] = 1if <exception mode> == Reset or FIQ then = 1 else unchanged
CPSR[7] = 1; Interrupt disabled
PC = Exception vector address

To return after handling the exception, the SPSR i1s moved into the CPSR and R14 is
moved to the PC. This can be done atomically in two ways:

1 Using a data-processing instruction with the S bit set, and the PC as the
destination.

2 Using the Load Multiple and Restore PSR instruction.

When the processor’s Reset input is asserted, ARM immediately stops execution of the
current instruction. When the Reset is de-asserted, the following actions are performed:

R14 svc = unpredictable value

SPSR svc = CPSR

CPSR[5:0] = 0b010011 ; Supervisor mode

CPSR[6] =1 ; Fast Interrupts disabled
CPSR[7] = 1 ; Interrupts disabled

PC = 0x0

Therefore, after reset, ARM begins execution at address 0x0 in supervisor mode with
Interrupts disabled. See 7.6 Memory Management Unit (MMU) Architecture on
page 7-14 for more information on the effects of Reset.

If ARM executes a coprocessor instruction, it waits for any external coprocessor

to acknowledge that it can execute the instruction. If no coprocessor responds,

an undefined instruction exception occurs. If an attempt iIs made to execute

an instruction that is undefined, an undefined instruction exception occurs (see 3.714.5
Undefined instruction Space on page 3-27).

The undefined Instruction exception may be used for software emulation of
a coprocessor in a system that does not have the physical coprocessor (hardware),
or for general-purpose instruction set extension by software emulation.

When an undefined instruction exception occurs, the following actions are performed:

R14 und = address of undefined instruction + 4
SPSR und = CPSR
CPSR[5:0] = 0b011011 ; Undefined mode

CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] =1 ; (Normal) Interrupts disabled
PC = 0Ox4

To return after emulating the undefined instruction, use:

MOVS PC,R14

This restores the PC (from R14_und) and CPSR (from SPSR_und) and returns to
the Instruction following the undefined instruction.

The software interrupt instruction (SWI) enters Supervisor mode to request a particular
supervisor (Operating System) function. When a SWI is executed, the following are

performed:

R14 svc = address of SWI instruction + 4
SPSR svc = CPSR

CPSR[5:0] = 0b010011 ; Supervisor mode

CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] =1 ; (Normal) Interrupts disabled

PC = 0x8

To return after performing the SWI operation, use:

MOVS PC,R1l4

This restores the PC (from R14_svc) and CPSR (from SPSR_svc) and returns to
the instruction following the SWI.

A memory abort Is signalled by the memory system. Activating an abort in response to
an instruction fetch marks the fetched instruction as invalid. An abort will take place if
the processor attempts to execute the invalid instruction. If the instruction is not
executed (for example as a result of a branch being taken while it is in the pipeline),
no prefetch abort will occur.

When an attempt is made to execute an aborted instruction, the following actions are
performed:

R14 abt = address of the aborted instruction + 4
SPSR abt = CPSR

CPSR[5:0] = 0bO010111 ; Abort mode

CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] =1 ; (Normal) Interrupts disabled

PC = 0xc

To return after fixing the reason for the abort, use:

SUBS PC,R14,#4

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt) and returns to
the aborted instruction.

A memory abort is signalled by the memory system. Activating an abort in response to
a data access (Load or Store) marks the data as invalid. A data abort exception will
occur before any following instructions or exceptions have altered the state of the CPU,
and the following actions are performed:

R14 abt = address of the aborted instruction + 8
SPSR abt = CPSR

CPSR[5:0] = 0b010111 ; Abort mode

CPSR[6] = unchanged ; Fast Interrupt status i1s unchanged
CPSR[7] =1 ; (Normal) Interrupts disabled

PC = 0x10

To return after fixing the reason for the abort, use:

SUBS PC,R14,#8

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt) and returns to
re-execute the aborted instruction.

If the aborted instruction does not need to be re-executed use:

SUBS PC,R14,#4

The final value left in the base register used in memory access instructions which
specify writeback and generate a data abort (LDR, LDRH, LDRSH, LDRB, LDRSB,
STR, STRH, STRB, LDM, STM, LDC, STC) I1s IMPLEMENTATION DEFINED.

An implementation can choose to leave either the original value or the updated value in
the base register, but the same behaviour must be implemented for all memory access
Instructions.

The IRQ (Interrupt ReQuest) exception is externally generated by asserting the
processor’s IRQ input. It has a lower priority than FIQ (see below), and is masked out
when a FIQ sequence Is entered. Interrupts are disabled when the | bit in the CPSR Is
set (but note that the | bit can only be altered from a privileged mode). If the | flag Is clear,
ARM checks for a IRQ at instruction boundaries.

When an |IRQ i1s detected, the following actions are performed:

R14 irq = address of next instruction to be executed + 4
SPSR irg = CPSR
CPSR[5:/0] = 0b0O10010 ; Interrupt mode

CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] =1 ; (Normal) Interrupts disabled
PC = 0x18

To return after servicing the interrupt, use:

SUBS PC,R14,#4

This restores both the PC (from R14_irq) and CPSR (from SPSR_irg) and resumes
execution of the interrupted code.

The FIQ (Fast Interrupt reQuest) exception is externally generated by asserting the
processor’s FIQ input. FIQ Is designed to support a data transfer or channel process,
and has sufficient private registers to remove the need for register saving in such
applications (thus minimising the overhead of context switching).

Fast interrupts are disabled when the F bit in the CPSR is set (but note that the F bit can
only be altered from a privileged mode). If the F flag is clear, ARM checks for a FIQ at
Instruction boundaries.

When a FIQ is detected, the following actions are performed:

R14 fig = address of next instruction to be executed + 4
SPSR figq = CPSR

CPSR[5:0] = 0b010001 ; FIQO mode

CPSR[6] = unchanged ; Fast Interrupt disabled
CPSR[7] =1 ; Interrupts disabled

PC = 0Xxlc

To return after servicing the interrupt, use:

SUBS PC, R14,#4

This restores both the PC (from R14_fig) and CPSR (from SPSR_fig) and resumes
execution of the interrupted code.

The FIQ vector is deliberately the last vector to allow the FIQ exception-handler software
to be placed directly at address 0x1c, and not require a branch instruction from
the vector.

The Reset exception has the highest priority. FIQ has higher priority than IRQ. IRQ has
higher priority than prefetch abort.

Undefined instruction and software interrupt cannot occur at the same time, as they
each correspond to particular (non-overlapping) decodings of the current instruction,
and both must be lower priority than prefetch abort, as a prefetch abort indicates that no
valid instruction was fetched.

The priority of data abort is higher than FIQ and lower priority than Reset, which ensures
that the data-abort handler is entered before the FIQ handler is entered (so that the data
abort will be resolved after the FIQ handler has completed).

Exception Priority

Reset 1 (Highest)

Data Abort 2
FIQ 3
IRQ 4
Prefetch Abort 5

6

Undefined Instruction, SWI (Lowest)

Table 2-4: Exception priorities

YCTPOMCTBO 3a ynpasaeHmne Ha nameTtTta: PyHKuuu. Pernctpu. TpaHcnauma Ha
agpecute. eckpmntopun. KewnpaHe un bypepupaHe. lpewkun. bydep 3a 3anuc.

The Memory Management MMU performs two primary functions: it translates virtual
addresses into physical addresses, and it controls memory access permissions. The
MMU hardware required to perform these functions consists of a Translation Look-
aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4KB blocks of memory and Large Pages consist of 64KB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1KB Sub-Pages and within Large Pages to 16KB Sub-
Pages.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used to
specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted and an off-chip access
Is required, the MMU outputs the appropriate physical address corresponding to the
virtual address. If access is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
IS chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Twrite | 010000 Control ORS B 11DIPIWICAM
2 write Translation Table Base

_ Domain Access Control
3write | 15 14 13 12 11 10| 9 | 8 | 7 6 5 4 3 2 1 0

5 read Fault Status 0/0/0{0| Domain Status
5 write Flush TLB

6 read Fault Address

6 write Purge Address

Figure 9-1: MMU register summary

Note The registers not shown are reserved and should not be used.

The ARM710a Processor provides several 32-bit registers which determine the

operation of the MMU. The format for these registers is shown in CFigure 9-1: MMU
register summary on page 9-3. A brief description of the registers is provided below.
Each register will be discussed in more detail within the section that describes its use

Data is written to and read from the MMU's registers using the ARM CPU's MRC and
MCR coprocessor instructions.

The Translation Table Base Register holds the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on a
16kB boundary.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

The Fault Status Register indicates the domain and type of access being attempted
when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was
being accessed when a fault occurred. Bits 3:1 indicate the type of access being
attempted. The encoding of these bits is different for internal and external faults (as
Indicated by bit O in the register) and is shown in C Table 9-4: Priority encoding of fault
status on page 9-12. A write to this register flushes the TLB.

The Fault Address Register holds the virtual address of the access which was
attempted when a fault occurred. A write to this register causes the data written to be
treated as an address and, if it Is found in the TLB, the entry is marked as invalid. (This
operation is known as a TLB purge). The Fault Status Register and Fault Address
Register are only updated for data faults, not for prefetch faults.

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in C Figure 9-3: Accessing
the transiation table first level descriptors. This address selects a four-byte translation
table entry which is a First Level Descriptor for either a Section or a Page (bit1 of the
descriptor returned specifies whether it is for a Section or Page)

Virtual Address

31 20 19 0
Table Index Section Index ‘
Translation Table Base
31 14 13 0
Translation Base ‘
12
L
/ 18

31 " 14 13 ; 2 1 0
Translation Base Table Index 0|0

31

First Level Descriptor

Figure 9-3: Accessing the translation table first level descriptors

9.4 Level One Descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

31 20 19 1211 10 9 8 5 43 210
00| Fault
Page Table Base Address Domain |1 01| Page
Section Base Address AP Domain |[1|C|B|1|0| Section
11| Reserved

Figure 9-4: Level one descriptors

The two least significant bits indicate the descriptor type and validity, and are
interpreted as shown below..

Value Meaning Notes

00 Invalid Generates a Section Translation Fault
01 Page Indicates that this is a Page Descriptor
10 Section Indicates that this is a Section Descriptor
11 Heserved Reserved for future use

Table 9-1: Interpreting level one descriptor Bits [1:01

9.5 Page Table Descriptor
Bits 3:2 are always written as 0.
Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in CFigure 9-7: Small
page translation on page 9-9).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
Initiated as described below.

9.6 Section Descriptor

Bits 3:2 (C, & B) control the cache- and wrnte-buffer-related functions as follows:

C - Cacheable: indicates that data at this address will be placed in the cache (if the
cache is enabled).

B - Bufferable: indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as
shown in © Table 9-2: Interpreting access permission (AP) bits on page 9-6. Their
interpretation is dependent upon the setting of the S and R bits (control reqgister bits 8
and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Hefer to section on access permissions

AP R Permissions Notes
Supervisor User

00 0 MNo Access No Access Any access generates a permission fault

00 0 Head Only No Access Supervisor read only permitted

00 1 Head Only Read Only Any write generates a permission fault

00 1 Heserved

o X Head/Write No Access Access allowed only in Supervisor mode

10 X Head/Write Read Only Writes in User mode cause permission
fault

11 X Head/Write Read/\Write All access types permitted in both
modes.

XX 1 Reserved

Table 9-2: Interpreting access permission (AP) bits

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

31

20

19

Virtual Address

Table Index

Section Index

Translation Table Base

74 14 13
Translation Base
12
/""'" 18 /
S
31 " 14 13 2 1

Translation Base

Table Index

0

First Level Descriptor

31 20 19 12 11 10 9 8 E 4 3 2 1
Section Base Address AP Domain |1/ C|B| 1
% 20
A 12 Physical Address ,f/
31 ' 20 19 ¢

Section Base Address

Section Index

Figure 9-5: Section transiation

9.8 Level Two Descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in CFigure
9-7: Small page transiation on page 9-9, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors.

31 20 19 16 15 12110 9 8 7 6 5 4 3 2 1 0
00| Fault
Large Page Base Address ap3 |ap2|apl1|ap0|C|B|0|1| Large Page
Small Page Base Address ap3 |ap2|apl | ap0|C|B|1|0| Small Page
1|1| Reserved

Figure 9-6: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Value Meaning Notes

00 Invalid Generates a Page Translation Fault
01 Large Page | Indicates that this is a 64 kB Page
10 Small Page | Indicates that this is a 4 kB Page
11 Reserved Reserved for future use

Table 9-3: Interpreting page table entry bits 1:0

Bit 2 B - Bufferable: indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 3 C - Cacheable: indicates that data at this address will be placed in the IDC (if the
cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in C Table 9-1: Interpreting level one
descriptor Bits [1.0] on page 9-5.

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in CFigure 9-7: Small page
translation on page 9-9 and CFigure 9-8: Large page translation on page 9-10).

Virtual Address

31 20 19 12 11
Table Index L2 Table Index Page Index 12
8 I
12 <
rd
Translation Table Base
31 14 13
Translation Base
18
31 14 13 +
Translation Base Table Index
First Level Descriptor
31 10 9 8 5 4
Page Table Base Address Domain | 1
31 10 9 ¢
Page Table Base Address L2 Table Index
Second Level Descriptor
31 121110 9 8 7 6 5 4 3
Page Base Address ap3d | ap2 |apl |ap0 |C
Physical Address
31 12 11 +
Page Base Address Page Index

Figure 9-7: Small page translation

Virtual Address

31 20 19 16 15 12 11 0
|
Table Index L2 Table Index Page Index 19
3 | ,f
12 4
;f’
Translation Table Base
31 14 13 0
Translation Base
15
31 14 13 # 0

Translation Base Table Index 0
First Level Descriptor
3 10 9 8 5 4 0
Page Table Base Address Domain | 1 1
3 10 9 ¢ 0
Page Table Base Address L2 Table Index 0
Second Level Descriptor
31 16 15 121110 9 8 7 6 5 4 3 0
Page Base Address ap3 | ap2|apl |ap0|C 1
Physical Address

31 16 15 * 0

Page Base Address Page Index

Figure 9-8: Large page translation

8.11 Cacheable and Bufferable Status of Memory Regions

Note

For first level translation table descriptor for each Section, and the second level
translation table descriptor for each Large Page, and each Small Page contain two
bits—the C-bit and the B-bit—which specify whether the memory in that Section or
Page will be cached or buffered, and whether it will be cached with Write-Through or
Write-Back behaviour.t

In addition the cache and write buffer behaviour is controlled by the cache enable bit
(C-bit) and write buffer enable bit (W-bit) in the CP15 Control Register.

To differentiate the two C bits, we shall add the subscript “tt” to the translation table bits

giving us Ctt and Btt, and the subscript “cr” to the control register bits giving us Ccr and
Wer.

The Cache and Write Buffer Configuration is determined by the values of Ctt, Btt, Ccr,
Woecr as shown in Table 8-5: Cache and write buffer configuration.

T Write-Back caches are also known as Copy-Back caches.
"AND” means bitwise AND function.

Ctt AND Ccr Btt AND Wcr | Cache, Writebuffer & External Abort Operation

0 0 Non-Cached, Non-Buffered (NCNB)

« Reads and Writes are not cached.

« Writes are not buffered.

- Heads and writes may be externally aborted.”

0 1 Non-Cached Buffered (NCB)
» Heads and Writes are not cached.

- Writes are buffered.
- Reads may be externally aborted.
- Writes cannot be externally aborted.

1 0 Cached, Write-Through Mode. (WT)

- Heads which hit in the cache read the data from the
cache and do not perform an external access.

« Heads which miss in the cache cause line fills which
may be externally aborted.

« All writes go off chip and are buffered.

- Writes which hit in the cache update the cache.

« Writes cannot be externally aborted.

1 1 Cached, Write-Back Mode. (WB)

» Reads which hit in the cache read the data from the
cache and do not perform an external access.

» Reads which miss in the cache cause line fills which
may be externally aborted.

» Writes which miss in the cache go off-chip and are

buffered.
» Writes which hit in the cache update the cache and

mark the entry as dirty, and do not cause an external

access.
» Cache write-backs are buffered.
» Writes (Cache Write-Misses & Cache Write-Backs)

cannot be externally aborted.

Table 8-5: Cache and write buffer configquration (Confinued)

8.12 MMU Faults and CPU Aborts

The MMU generates six types of faults:
Alignment Fault
Translation Fault
Domain Fault
Permission Fault
Terminal Fault
Vector Fault
In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.
See 8.13 Fault Address and Fault Status Registers (FAR and FSR).

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access. External aborts will not necessarily
inhibit the external access, as described in the section on external aborts.

8.13 Fault Address and Fault Status Registers (FAR and FSR)

Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4 bit value F5[3:0], along with the 4 bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address associated with the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in Table 8-6: Priority Encoding of
Fault Status on page 8-17.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (i.e. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

Source Domain(3:0] FAR

highest priority
Terminal Exception 0b0010 invalid VA of start of cache line
being written-back
Vector Exception 0b0000 invalid VA of access causing abort
Alignment Ob00x1 invalid VA of access causing abort
External Abort on Translation First level 0b1100 invalid VA of access causing abort
Second level Ob1110 valid 9
Translation Section 0b0101 invalid VA of access causing abort
Page | ObO111 valid 9
Domain Section Ob1001 valid VA of access causing abort
Page | Ob1011 valid 9
Permission Section Ob1101 valid VA of access causing abort
Page | Ob1111 valid 9
External Abort on linefetch Section 0b0100 valid VA of start of cache line
Page 0b0110 valid being loaded
External Abort on non-linefetch Section Ob1000 valid VA of access causing abort
Page | 0b1010 valid 9
lowest priority

Table 8-6: Priority Encoding of Fault Status

8.14 Domain Access Control

MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. Figure 8-8: Domain
Access Control Register format on page 8-19 illustrates how the 32 bits of the
register are allocated to define the sixteen 2-bit domains.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

15 | 14 | 13 | 12 | 11 10 9 8 7 6 2

Figure 8-8: Domain Access Control Register format

Table 8-7: Interpreting access bits in Domain Access Control Register defines
how the bits within each domain are interpreted to specify the access permissions.

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Heserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

Table 8-7: Interpreting access bits in Domain Access Control Register

Virtual Address

Check Vector Exception

Check Address Alignment

26 bit data)_,.. Vector
access fo vec Fault
misangneuH Alignment

Section
T'aﬁglﬁ{'”" invalid get Level One Descriptor
Section | F'age
Tgﬁtl PEQE invalid TIEJ_I'IS atlﬂn
able cntry Fault
Section no access(00) Page
Domain no access(00) check Domain Status Domain
Lo reserved(10) esenea10 Fault

Section

= |

Page

1

Section sub-Page
Permission 4—(violation Eheck_m:_cess Ghec:k_ﬁ-:._'c:ess violation Permiss?ﬂn
Fault Permissions Permissions Fault

Physical Address ‘

Figure 8-9: Sequence for checking faults

8.15.1 Terminal fault

A terminal fault indicates a system software error in the maintenance of the translation
tables in main memory when using the Instruction-Data-Cache in Write-Back mode. It
Is indicated in theFault Address Register and Fault Status Register to aid debugging
system software.

A terminal fault is indicated when a cache-write-back fails to translate the virtual
address of the cache line to be written-back into a physical address because the
associated translation table walk was aborted by the memory system or returned an
invalid Level One or Level Two descriptor [A descriptor is invalid if bits[1:0] have the
value “00" or “117].

System Software must ensure that the cache contains no dirty-data for a page or
section before changing the virtual-to-physical mapping of that page or section or
disabling the virtual-to-physical mapping of that page or section. A Terminal Fault
Indicates that system software has failed to do this. When a terminal fault occurs, the
data to be written-back from the cache to main memory is irrecoverably lost. A terminal
fault is therefore not a reversible fault.

8.15.2 Vector fault

A Vector fault is generated by the MMU if the processor attempts a load or store data
access to an address in the range &00000000 and &0000001F inclusive when
operating in a 26-bit Mode. Vector faults are never generated for instruction fetches.
Vector faults are generated regardless of the setting of the MMU enable bit (M-bit) in
the System Control Coprocessor Control Register.

8.15.3 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

8.15.4 Translation fault

There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both O or both 1.

8.15.5 Domain fault

There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in Table 8-3: Interpreting access
permission (AP) Bits on page 8-9. In the case of a section, the domain is checked
once the Level One descriptor is returned, and in the case of a page, the domain is
checked once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

8.15.6 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is checked at
the same time as Domain fault. If the 2-bit domain field returns client (01), then the permission
access check is invoked as follows:

section:

If the Level One descriptor defines a section-mapped access, then the AP bits of the descriptor
define whether or not the access is allowed according to Table 8-3: Interpreting access
permission (AP) Bits on page 8-9. Their interpretation is dependent upon the setting of the S

bit (Control Register bit 8). If the access is not allowed, then a Section Permission fault is
generated.

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two descriptor
specifies four access permission fields (ap3..ap0) each corresponding to one quarter of the
page. Hence for small pages, ap3 is selected by the top 1KB of the page, and ap0 is selected
by the bottom 1KB of the page; for large pages, ap3 is selected by the top 16KB of the page,
and ap0 is selected by the bottom 16KB of the page. The selected AP bits are then interpreted
in exactly the same way as for a section (see Table 8-3: Interpreting access permission (AP)

Bits on page 8-9), the only difference being that the fault generated is a sub-page permission
fault.

8.16 External Aborts

In addition to the MMU-generated aborts, ARM810 has an external abort pin which may be
used to flag an error on an external memory access. However, not all accesses can be aborted
in this way, so this pin must be used with great care. The following section describes the
restrictions.

The following accesses may be aborted and restarted safely. In the case of a read-lock-write
sequence in which the read aborts, the write will not happen.

Reads

Unbuffered writes

Level One descriptor fetch
Level Two descriptor fetch
read-lock-write sequence

Cacheable reads (linefetches)

A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the
linefetch then the cache line will be invalidated. If the abort happens on a word that has been
requested by the ARMS, the instruction will be aborted, otherwise the cache line will be
invalidated but program flow will not be interrupted. The line is therefore invalidated under all
circumstances.

Buffered writes.

Buffered writes cannot be externally aborted. Therefore, the system should be configured such
that it does not do buffered writes to areas of memory which are capable of flagging an external
abort.

Writes to Cacheable Regions

Writes to cacheable regions and cache write-backs are performed as buffered writes and
cannot be externally aborted. The system design should ensure that writes to cacheable
regions are not externally aborted.

8.17 Interaction of the MMU, IDC and Write Buffer

The MMU, IDC, WB and Branch prediction may be enabled/disabled independently. However,
In order for the write buffer or the cache to be enabled the MMU must also be enabled. Also,
Branch prediction must never be enabled when the cache is disabled. There are no hardware
interlocks on these restrictions, so invalid combinations will cause undefined results.

MMU IDC WB
off off off
on off off
on on off
on off on
on on on

Table 8-8: Valid MMU, IDC and Write Buffer combinations

The following procedures must be observed.

To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers
2 Program Level 1 and Level 2 page tables as required
3 Enable the MMU by setting bit O in the Control Register.

The ARM810 write buffer is provided to improve system performance. It can buffer up
to 8 words of data, and 4 independent addresses. It may be enabled or disabled via
the W bit (bit 3) in the ARM810 Control Register and the buffer is disabled and flushed
onreset. The operation of the write buffer is further controlled by the C and B bits which
are stored in the Memory Management Page Tables. For this reason, in order to use
the write buffer, the MMU must be enabled. The two functions may however be
enabled simultaneously, with a single write to the Control Register. For a write to use
the write buffer, both the W bit in the Control Register and either the C or B bit in the
corresponding page table must be set.

It is not possible to abort buffered writes externally; the abort pin will be ignored. Areas
of memory which may generate aborts should be marked as unbufferable in the MMU
page tables.

9.2 Write Buffer Operation
9.2.1 Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area, the data
Is placed in the write buffer at FCLK (MCLK if running with fastbus extension) speeds and the
CPU continues execution. The write buffer then performs the external write in parallel. If
however the write buffer is full (either because there are already 8 words of data in the buffer,
or because there is no slot for the new address) then the processor is stalled until there is
sufficient space in the buffer.

9.2.2 Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the processor
Is stalled until the write buffer empties and the unbufferable write completes externally, which
may require synchronisation and several external clock cycles.

9.2.3 Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even if it is
marked as buffered.

Pa3BuTMe Ha MMKpONpoOLECcCopHaTa apxutektypa: Passutne Ha Ml go 64-6utosa

apxutekTypa. padmnyHmn npouecopun. MHoroaapeHoCT.

Result Details Result Details

Your fastest score for Firefox 8.0a1

7009 Points

Your fastest score for Firefox 8.0a1

7847 Points

Suite Result Suite Result

[I
Rendering - 4591 b . Rendering - 4654 b .
| == I —
~ 32-bit 64-bit
-
|

Social networking Social netwaorking 5933

Complex graphics 21600 Complex graphics 22718

Data 12461 Data

DOM operations

5598 DOM operations 7295

1

Text parsing

11935 Text parsing 12409

MMXO/FPRO
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPRY

RFLAGS

RIP

General-Purpose 64-Bit Media and

Registers (GPRs) Floating-Point Registers
RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8 79 0
RO
R10 Flags Register
R11 | 0 |EFLAGSI
R12
R13 63 0
R14 Instruction Pointer
R15 - EIP

63 0 63 0

Legacy x86 registers, supported in all modes

Register extensions, supported in 64-bit mode

SSE Media
Registers

YMM/XMMO
YMM/XMMT
YMM/XMM2
YMM/XMM3
YMM/XMM4
YMM/XMM5
YMM/XMM6
YMM/XMM7
YMM/XMM8
YMM/XMM9
YMM/XMM10
YMM/XMMT1
YMM/XMM12
YMM/XMM13
YMM/XMM14
YMM/XMM15

255 127 0

Application-programming registers not shown include
Media eXension Control and Status Register (MXCSR) and
x87 tag-word, control-word, and status-word registers

513101 ymm.eps

Figure 1-1. Application-Programming Register Set

Table 1-1.

Operating Modes

o Defaults Typical
Operatin Application Register
Operating Mode P 9 Recompile | Address | Operand gis GPR
System Required Required Sjze Sijze Extensions Width (bit
(bits) | (bits) \dth (bits)
64-Bit yes 64 yes 64
Long | Mode 64-bit OS 32
-bi
Mode |Compatibility . 32 o 32
Mode 16 16 16
Protected 32 32 32
Mode . 16 16
Legacy 32-bit OS
Legacy | Virtual-8086 o no
viode | Mode 16 16 16
Real :
Mode Legacy 16-bit OS

Table 1-2. Application Registers and Stack, by Operating Mode

Register Legacy and Compatibility Modes 64-Bit Mode’
or Stack Name Number | Size (bits) Name Number | Size (bits)
RAX, RBX, RCX,
General-Purpose EAX, EBX, ECX, RDX, RBP, RSI,
_ 5 EDX, EBP, ESI, 8 32 16 64
Registers (GPRs) EDI ESP RDI, RSP,
’ R8-R15
2R56'.b't YMM YMMO-YMM73 8 256 | YMMO-YMM153 | 16 256
egisters
;28'.5“ XMM XMMO-XMM73 8 128 | XMMo-xMM153 | 16 128
egisters
64-Bit MMX MMX0-MMX74 8 64 MMX0-MMX74 8 64
Registers
x87 Registers FPRO-FPR7* 8 80 FPRO-FPR7* 8 80
Instruction Pointer? EIP 1 32 RIP 1 64
Flags? EFLAGS 1 32 RFLAGS 1 64
Stack —_ 16 or 32 — 64
Note:

1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are
the AMDG64 architecture’s register extensions.

2. GPRs are listed using their full-width names. In legacy and compatibility modes, 16-bit and 8-bit mappings of the
registers are also accessible. In 64-bit mode, 32-bit, 16-bit, and 8-bit mappings of the registers are accessible. See
Section 3.1. “Registers” on page 23.

The XMM registers overlay the lower octword of the YMM registers. See Section 4.2. “Registers™ on page 111.

The MMX0-MMXT7 registers are mapped onto the FPRO-FPR7 physical registers, as shown in Figure 1-1. The x87
stack registers, ST(0)-ST(7), are the logical mappings of the FFRO-FPR7 physical registers.

nall Sl

6.1 Overview of ARM’s 64-bit Cortex-A series (6)

Main features of ARM’s 64-bit Cortex-A series [51]

Available

CPU Core Architecture Efficiency big.LITTLE Announced in devices Target
Cortex-A73 ARMVE (6a-bit) 7.4-8.5DMIPS/MHz (o YOS 2016 2017 _HiZhTeer\l
i Cortex-A72 ARMVS (64-bit) 6.3-7.3 DMIPS/MHz (| . XEE/A%) 2015 2016 High-end :
: Cortex-A57 ARMvS8 (64-bit) 4,8 DMIPS/MHz (wit\r(leZSS) 2012 2015 High-end :
: Cortex-A53 ARMvS (64-bit) 2,3 DMIPS/MHz Yes (with A57) 2012 2H 2014 Low power :

!
I\ Cortex-A35 ARMVS (64-bit) 2,1 DMIPS/MHz ves (/‘Q’;tzh)ASW 2015 2H 2016 Low power
o -
Cortex-A17 ARMv7 (32-bit) 4,0 DMIPS/MHz Yes (with A7) 2014 2015 Mainstream
Cortex-A15 ARMv7 (32-bit) 4,0 DMIPS/MHz Yes (with A7) 2010 Now High-end
(Cortex-A12 ARMv7 (32-bit) 3,0 DMIPS/MHz - 2013 2H 2015 Mainstream)

Cortex-A9 ARMv7 (32-bit) 2,5 DMIPS/MHz - 2007 Now (EOL) High-end

Cortex-A8 ARMv7 (32-bit) 2,0 DMIPS/MHz - 2005 Now (EOL) High-end

Cortex-A7 ARMv7 (32-bit) 1,9 DMIPS/MHz Yes (A15/A17) 2011 Now Low power

Cortex-A5 ARMv7 (32-bit) 1,6 DMIPS/MHz - 2009 Now Low power

6.1 Overview of ARM’s 64-bit Cortex-A series (8)

Performance comparison: ARM’s Cortex-A72 vs. Intel’s Core-M [72]

Single-thread Multi-thread*® Memory

18
16 ® Core-M (14nm)

' 4 ® Cortex-A72 2.5 GHz est (16nm)
12

0

ch MY SPECintRate (4T) STREAM Add STREAM Copy STREAM Salke STREAM Triad

LI‘I'I !n'lt' h 5‘ l.)"k(.‘ "

threaded workloads use 2(ind estimated on 4C Cortex-A ration wi2MB L2 cache
| N Nas Maximum rJd ; jencyrating of ZOMZ 1S jree’ark.ntel.com
threaded workioads, the Core-M will be thermaly imited and not able to reach maxmumetarget frequency ARM

6.2.1 The high performance Cortex-A57 (12)

Cortex-A57/A53 performance - compared to the Cortex-A15 [55]

45% increase through

improvements

Geekbenchv3.1
1.16
Integer 1.55
Floating - w Cortex-A15
1.46
Point m Cortex-AS57 328
m Cortex-AS57 64B
gec 4.9
Stream » Cortex-A53 648
gec 4.8
Overall 1.45
1.5 2

incremental microarchitecture | Normalized Performance

6.2.1 The high performance Cortex-A57 (10)

Contrasting the Cortex-A53 and Cortex-A57 arithmetic pipelines

[Based on 54]

— > De

Integer pipe

o N

Cortex-AS53 Pipeline

. .— Neon/FPU pipe (fixed engthr—i.

" . Simple Cluster 0 pipe

R1

" . Simple Cluster 1 pipe
. .— Complex Cluster pipe (variable bengm)—-. .

D1
HEEEE- -
Cortex-A57 D1
Pipeline

D: Decode
R: Rename
P: Dispatch
I: Issue

E: Execute

WB: Write Back

Note: Branch and Load/Store pipelines not shown

(1x Load/Store pipeline for the Cortex A-53 and
2X Load/Store and 1x Branch pipeline for the Cortex-A-57)

6.2.5 The low power Cortex-A35 (6)

Relative performance of the Cortex-A35 vs. the Cortex-A7
assuming the same process technology (28 nm) [90]

Relative Performance
B Cortex-A7

B Cortex-A35 | 36X [.40x

[.16x
|.06x

performance

\@/ Higher

(X

Lower power

Integer Browsing Float Geekbench MP|

Comparisons assume same process technology and implementation for both processors

The change from 32-bit to 64-bit
There are several performance gains derived from moving to a 64-bit processor.

e The A64 instruction set provides some significant performance benefits, including a larger register pool. The
additional registers and the ARM Architecture Procedure Call Standard (AAPCS) provide a performance boost
when you must pass more than four registers in a function call. On ARMv7, this would require using the stack,
whereas in AArch64 up to eight parameters can be passed in registers.

e Wider integer registers enable code that operates on 64-bit data to work more efficiently. A 32-bit processor
might require several operations to perform an arithmetic operation on 64-bit data. A 64-bit processor might
be able to perform the same task in a single operation, typically at the same speed required by the same
processor to perform a 32-bit operation. Therefore, code that performs many 64-bit sized operations is
significantly faster.

e 64-bit operation enables applications to use a larger virtual address space. While the Large Physical Address
Extension (LPAE) extends the physical address space of a 32-bit processor to 40-bit, it does not extend the
virtual address space. This means that even with LPAE, a single application is limited to a 32-bit (4GB) address
space. This is because some of this address space is reserved for the operating system.

e Software running on a 32-bit architecture might need to map some data in or out of memory while executing.
Having a larger address space, with 64-bit pointers, avoids this problem. However, using 64-bit pointers does
incur some cost. The same piece of code typically uses more memory when running with 64-pointers than with
32-bit pointers. Each pointer is stored in memory and requires eight bytes instead of four. This might sound
trivial, but can add up to a significant penalty. Furthermore, the increased usage of memory space associated
with a move to 64-bits can cause a drop in the number of accesses that hit in the cache. This in turn can
reduce performance.

The larger virtual address space also enables memory-mapping larger files. This is the mapping of the file
contents into the memory map of a thread. This can occur even though the physical RAM might not be large
enough to contain the whole file.

Registers In AArcho4 state

In the AArch64 application level view, an ARM processing element has:

RO-R30

SP

PC

31 general-purpose registers, R0 to R30. Each register can be accessed as:
. A 64-bit general-purpose register named X0 to X30.

. A 32-bit general-purpose register named WO to W30.

See the register name mapping in Figure B1-1.

63 32:31 0 :
Rn

- Wn >

» Xn -

Figure B1-1 General-purpose register naming

The X30 general-purpose register 1s used as the procedure call link register.

Note
In mstruction encodings, the value 8b11111 (31) 15 used to indicate the ZR (zero register). This

indicates that the argument takes the value zero, but does not indicate that the ZR 15 implemented
as a physical register.

A 64-bit dedicated Stack Pointer register. The least significant 32 bats of the stack-pointer can be
accessed via the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pomter.
Note

Stack pointer alignment to a 16-byte boundary 1s configurable at EL1. For more information see the
Procedure Call Standard for the ARM 64-bit Architecture.

A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can only be updated on a branch, exception entry or
exception refurn.

Bitwize AND Immediate

& iDDS Add and set flags = Eﬂ hHDIS Bitwise AND and set flags Immediate
ﬁ"‘ SUB Subtract %PE ORRI Bitwise inclusive OR Immediate
o SUBS Subtract and set flags = £ | EORI Bitwizse exclusive OR Immediate
é CMP Compare B TS5TI Test bits Immediate
£ CMN Compare negative T LSL Logical shift left Immediate
< | NEG Negate E LSR Logical shift right Immediate
NEGS MNegate and set flags £ ASR Arithmetic shift nght Immediate
ADDI Add Immediate E ROR Rotate nght Immediate
Py ADDIS Add and set flags Immediate ‘E“_] L SRV Logical shift nght register
E % SUBI Subtract Immediate Eﬂ L 5LV Logical shift left register
E £ | SUBIS Subtract and set flags Immediate & ASRV Arithmetic shift right register
<= CMPI Compare Immediate 75 RORV Rotate right register
CMNI Compare negative Immediate o % MOVZ Move wide with zero
ADD Add Extended Register = - MOVK Move wide with keep
© g | ADDS Add and set flags Extended g 2 | Mo Move wide with NOT
TE |sus Subtract Extended Register = E | mov Move register
E .% SUBS Subtract and set flags Extended BFM Bitfield move
= CMP Compare Extended Register = SBFM Signed bitheld move
CMN Compare negative Extended E UEFM Unsigned bitfield move (32-bit)
ADC Add with carry g BFI Bitfield insert
g ADCS Add with camry and set flags E BFXIL Bitfield extract and insert low
£ 2 [3BC Subtract with carry £ SBFIZ Signed bitheld insert in zero
E 1'.{3 SBCS Subtract with carmy and set flags % SBFX Signed bitheld extract
g NGC Negate with camy g UBFIZ Unsigned bitfield insert in zero
NGCS Megate with camry and set flags UBFX Unsigned bitfield extract
AND Bitwise AND EXTR Extract register from pair
ANDS Bitwise AND and set flags 5XTE Sign-extend byte
_ ORR Bitwise inclusive OR E S5XTH Sign-extend halfword
2 | EOR Bitwise exclusive OR | SXTW Sign-extend word
E BIC Bitwise bit clear % UXTE Unsigned extend byte
E BICS Bitwise bit clear and set flags UXTH Unsigned extend halfword
@ | ORN Bitwise inclusive OR NOT CLS Count leading sign bits
- EOM Bitwizse exclusive OR NOT E CLZ Count leading zero bits
MYN Bitwise NOT B | RBIT Reverse bit order
TST Test bits & REV Reverse bytes in register
& | REVIG Reverse bytes in halfwords
REV3Z Reverses bytes in words

_Type | Mnemonic| __ Instruction | Type |Mnemonic| Imstruction

LDUR Load register (unscaled offset) LDXR Load Exclusive register
LDURB Load byte (unscaled offset) LDXREB Load Exclusive byte
LDURSB Load signed byte (unscaled offset) LDXRH Load Exclusive halfword
LDURH Load halfword (unscaled offset) % LDXP Load Exclusive Pair
E LDURSH Load signed halfword (unscaled offset) é STXR Store Exclusive register
E LDURSW Load signed word (unscaled offset) STXRB Store Exclusive byte
5 STUR Store register (unscaled offset) STXRH Store Exclusive halfword
STURB Store byte (unscaled offset) STXP Store Exclusive Pair
STURH Store halfword (unscaled offset) o LDAXR Load-aquire Exclusive register
STURW Store word (unscaled offset) 3 LDAXRB Load-aquire Exclusive byte
LDA Load address .i% LDAXRH Load-aquire Exclusive halfword
7 LDR Load register g LDAXP Load-aquire Exclusive Pair
E LDRE Load byte E STLXR Storerelease Exclusive register
b LDRSB Load signed byte = STLXRB Storerelease Exclusive byte
; g | LDRH Load halfword é STLXRH Store-release Exclusive halfword
% E LDRSH Load signed halfword w STLXP Store-release Exclusive Pair
£ = | LDRSH Load signed word LDP Load Pair
L_:- S5TR Store register ﬁ LDPSW Load Pair signed words
= STRB Store byte STP Store Pair
% STRH Store halfword o ADRP Compute address of 4KB page at a
o PC-relative offset
ADR Compute address of label at a PCrelative
offset

FIGURE 2.42 The list of assembly language instructions for the integer data transfer operations in the full
ARMYvS8 instruction set. Bold means the instruction is also in LEGVS, italic means it is a pseudoinstruction, and bold italic means itis a
pseudoinstruction that is also in LEGVS.

Type |[Mnemonic] ____Instruction [Type|Mnemonic| _Instruction

B B.cond |Branch conditionally CSEL Conditional select

g S CBNZ Compare and branch if nonzero CSINC Conditional select increment

% E CBZ Compare and branch if zero % CSINV Conditional select inversion

é @ | TBNZ Test bit and branch if nonzero v CSNEG Conditional select negation

TBZ Test bit and branch if zero E CSET Conditional set

= B Branch unconditionally £ | CSETM Conditional set mask

E £ BL Branch with link é CINC Conditional increment

'E S | BLR Branch with link to register CINV Conditional invert

§ @ | BR Branch to register CNEG Conditional negate

=) RET Return from subroutine T o CCMP Conditional compare register
E @ | CCMPI Conditional compare immediate
E E CCMN Conditional compare negative register
8©° CCMNI Conditional compare negative immediate

FIGURE 2.43 The list of assembly language instructions for the branches of the ARMvS8 instruction set. Bold means

the instruction is also in LEGvS, italic means it is a pseudoinstruction, and bold italic means it is a pseudoinstruction that is also in LEGvS.

Figure 4.1 CPU Registers for MIPS64

63

General Purpose Registers

32 A

) (hardwired to zero)

rl

r2

3

rd

S

b

]

ré

M

rl0

rll

rl2

rl3

rl4

rl5

rl6

rl7

rl8

ri9

r20

r21

22

r23

24

r25

r26

27

28

29

r30

r3l

63

Special Purpose Registers

AVX512 state

Kmask k0..k7 zmm0..zmm31 .. xmmO0..xmm7

SSE
AVX
SSE - 1A64

AVX512

High amounts of compute need large amounts of state to compensate for memory BW 7
AVX512 has 8x state compared to SSE (commensurate with its 8x flops level)

Intel confidential — presented under NDA only — under embargo until 6:01 a.m. PDT, June 19, 2017

S0-S31 DO0-D15 DO0-D31 Q0-Q15

{

VFPV2, VFPv3-D32,
VFP only VFPv3-D16, or VFPv4-D32, or ‘“‘d‘“'angsld SIMD
VFPv4-D16 Advanced SIMD y
S0 . po — . po — | _—
S1
R e N B - Q0 —]
b1 — b1 — - _
s | [- 0 T - 0
z; . p2 . p2 | _—
T B - Q1 —]
. p3 — . p3 — | _—
s | [> =
e I T B
- _ q7
D15 — D15 — | _—
1. | [["1
. D16 — - _
_ p17 — | _
. D30 — — —
Q15 —|
| p31 — | _—

Figure A2-1 Advanced SIMD and Floating-point Extensions register set

6.1 Overview of ARM’s 64-bit Cortex-A series (10)

Up to 48 core server SoC based on the CorelLink CCN512 interconnect [72]

Up to 4 —— Heterogeneous processors — CPU, GPU, DSP and
cores Virtualized Interrupts accelerators
S | \
Per] \
cluster \ GIC-500 1 ‘\
Cortex CPU J§ Cortex CPU 10-40 ¥ lé“'f”m
or CH or CHI GbE PCle PCl DSP ? ystem
(Fae) () (o2) (@)
Cortex-A57 AR Cortex-A57 AR Cortex-A57 (DI) (DPI) (Crypto) (UsB) memory
Upto |2 s’
Cortex CPU || Cortex CPU NIC-400 g
coherent Nao II II II II or CHI or CHI
master master
clusters Cortex-A53 AN Cortex-A53 Ak Cortex-A53 AR Cortex-A53 /O Virtualisation CoreLink MMU-300 - UP t0 241/0
— - - .
I I s coherent interfaces
CoreLink™ CCN-512 Cache Coherent Network for
accelerators
|-32MB L3 cache SI'IOOp Filter and I/O

Integrated | 7 Memory Memory Memory Memory

L3 cache Controller Controller Controller Controller
DMC-520 DMC-520 DMC-520 DMC-520

x72 x72 x72 x72 Flagh) --reer (smm) (GPIO) (PCle)
DDR4-3200 DDR4-3200 DDR4-3200 DDR4-3200 ()
|
‘ |

Up to Quad channel I
DDR3/4 x72 Peripheral address space

Network Interconnect Network Interconnect
NIC-400 NIC-400

Host CPU Bridge System Memory
GPU
Host Interface | |
Input Assembler Setugéﬁjlste# Video Processors
| I
Vertex Work Pixel Work Compute Work
SPA Distribution Distribution Distribution
| | I | | | | |
I TPC TPC TPC TPC | TPC | TPC | TPC TPC
I 1 1 I I I |
[I i 1 | I | | [l I |
SM SM SM SM SM SM SM SM SM SM SM SM SM
I I{|l [[T1] Il [Il ! Il 1| Il I [I I Il |
I Il [[{]1 [! [l [{]1 Il ! I | I I Il |
I I[1 (1]l [[/ [[l [1l [I [I I Il |
Sl R R S N 2 A R R R 2R =2 R [SP|EP) [SP|[sP] [sP|fsP]
Sl =R R R R N =R U 2R [sP|isP] [sP|[sP] [sPlfsP]
S8 SRR R R R R SR R RN EE SR R EE R R R R R ER [SPI[SP] EREREEEE
S8 MR R R =R SR R RN EE A (R EE R R =R R R ER [SPI[SP] ERER RS
DL EIE DR ETE EIE T EIE LIETE] LI LI
===l | (=== =] == [ey |
‘ Taxctura Unit Tature Unit Taxcture Unit Taxture Unit ‘ Tecture Unit ‘ Tauture Unit Textura Unit
| Tax L1 [T]| T L1 (11| Tex L1 [T Tew L1 (N 1| Tew L1 | | Tew L1 | Tex L1 |
| | | | | I | I | I | | |
(Interconnection Metwork)
| | | | | | | | | | |
ROP L2 ROP L2 ROP L2 ROP L2 ROP L2 ROP L2 Interface
DRAM DRAM DRAM DRAM DRAM DRAM E Display

FIGURE B.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8800 has 128 streaming processor

(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). The processors connect with six 64-bit-
wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs,

DRAM partitions, and other units.

The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA
cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The
512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory
partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDRS DRAM
memory. A host interface connectis the GPU to the CPU via PCI-Express. The GigaThread
global scheduler distributes thread blocks to SM thread schedulers.

a1
)
1]
f =
4]
o]
=
Ly
O
I

GigaThead

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

Third Generation Streaming
Multiprocessor

The third generation SM introduces several
architectural innovations that make it not only the
most powerful SM yet built, but also the most
programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA CUDA Core

processors—a fourfold Dispatch Port

. . Operand Collector
Increase over prior SM

designs. Each CUDA

processor has a fully

pipelined integer arithmetic Result Queue
logic unit (ALU) and floating

point unit (FPU). Prior GPUs used IEEE 754-1985
floating point arithmetic. The Fermi architecture
implements the new IEEE 754-2008 floating-point
standard, providing the fused multiply-add (FMA)
instruction for both single and double precision
arithmetic. FMA improves over a multiply-add ~ mierconnectNetwork
(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no _
loss of precision in the addition. FMA is more e |

accurate than performing the operations Fermi Streaming Multiprocessor (SM)
separately. GT200 implemented double precision FMA.

Multiply-Add (MAD):

4
- I

Fused Multiply-Add (FMA)

+
- I

PEZY-SCx Processor Roadmap

‘ PEZY-SC ‘ PEZY-SC2 PEZY-SC3 PEZY-SCA4
Process 28nm 16nm nm Snm
Die Size 412mm?2 620mm?2 700mm?2 7401mm?2
Number of Cores 1,024 2,048 8.096 16,192
Core Voltage 0.9V 0.8V 0.65V 0.55V
Core Clock 733MHz 1GHz 1.33GHz 1.6GHz
DRAM-IO DDRA4 DDR4 DDR4/5 DDR5
DDR Clock 2.133MHz 2.666MHz 3.6GHz 4GHz
Port£4 8 4 4 4
Wide-10 Clock 2GHz DDR 2GHz DDR 3GHz DDR
Wide-10 Width - 1.024Dbit 3.072btt 4,096bit
Wide-10 Ports 1 8 8
Memory Bandwidth 153.6GB/s 2.1TB/s 12.2TB/s 24 4TB/s
Peripheral IO PCI3e Gen3 PCle Gend Custom Optical Custom Optical
Peripheral IO lane 24 32 128 512
Peripheral 10 Bandwidth 32GB/s 64GB/s 256GB/s 1TB/s
DP Performance 1.5TFLOPS 4. 1TFLOPS 21.8TFLOPS 52.5TFLOPS
SP Performance 3.0TFLOPS 8.2TFLOPS 43.6TFLOPS 105TFLOPS
HP Performance - 16.4TFLOPS 87.2TFLOPS 210TFLOPS
Power Consumption 100W 200W 400W 640W
Power Efficiency 15GFLOPS/w 20.5GFLOPS/w 54.5GFLOPS/w 82.0GFLOPS/w
System Efficiency 6.7GFLOPS/w 1SGFLOPS/w 40GFLOPS/w 60GFLOPS/w

City

City

City

City || City

City

City

City

City

City |

City

City

City

City || City

City

City

City

City

City

City

City

City

City || City

City

City

City

City

City

City

City

City

City || City

City

City

City

City

City

City

City

City || City

City
City

City

City

City

City

City

City

City

ity || City

ity

City

City

City

City

City

City

City

City

City

City

City

City

City

City

C C
City || City || City
City || City || City

C
City
City

City

City

City

City

Custom TCI Link
(0.5 TB/s)

Custom TCI Link
(0.5 TB/s)

LLC (40 MiB)

Custom TCI Link

(0.5 TB/s)

Custom TCI Link

(0.5 TB/s)

DDR4-3200

(64bit 25.6 GB/s)

DDR4-3200

(64bit 25.6 GB/s)

DDR4-3200

(64bit 25.6 GB/s)

DDR4-3200

(64bit 25.6 GB/s)

Host I/F

Processor 1I/F

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

MIPS64
P6600

City

‘ Special Function Unit \

Village Village

Village

JLOET

Village Village

| |

‘ L2D$ (64 KiB) \

8X Program Counter
L1I$ (256W x 64-Dbit)
(2 KiB)

ALU
4 FLOP/cycle

Reqister File
(256W x 32-bit)
(1 KiB)

Local Storage
(4096W x 32-bit)
(16 KiB)

KpaTku cBegeHua 3a apyrn MI1: YchoBHu npexoan n npeHoc B MI1 6e3 PKY (,,Alpha“
MIPS). M c ,,pernctpos npo3opey” (SPARC). Mporpamu ,,3apasen, cBat!” 3a paznnyHu
MTIT n onepaunoHHm cuctemmn (OC).

Date announced 1992 1986 1986 1993 1987
Instruction size (bits) 32 32 32 32 32
Address space (size, model) 64 hits, flat 32 bits, flat 48 hits, 32 bits, flat 32 bits, flat
segmented
Data alignment Aligned Aligned Aligned Unaligned Aligned
Data addressing modes 1 1 5 4 2
Protection Page Page Page Page Page
Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB
/O Memory mapped | Memory mapped | Memory mapped | Memory mapped | Memory mapped
Integer registers (number, model, size) | 31 GPR x 64 bits | 31 GPR x 32 bits | 31 GPR x 32 bits | 32 GPR x 32 bits | 31 GPR x 32 bits
Separate floating-point registers 31 x32o0r 16 x 32 or 56 x 32 or 32 x 32 or 32 x 32 o0r
31 x 64 bits 16 x 64 bits 28 x 64 bits 32 x 64 bits 32 x 64 bits
Floating-point format IEEE 754 single, |IEEE 754 single, | IEEE 754 single, | |IEEE 754 single, | IEEE 754 single,
double double double double double

FIGURE E.1.1 Summary of the first version of five architectures for desktops and servers. Except for the number of data
address modes and some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this with Figure
E.17.1. Later versions of these architectures all support a flat, 64-bit address space.

Register + offset (displacement or based)

Register + register (indexed) X (FP) X (Loads) X X
Register + scaled register (scaled) X

Register + offset and update register X A

Register + register and update register X X

FIGURE E.2.1 Summary of data addressing modes supported by the desktop architectures. PA RISC also has short address
versions of the offset addressing modes. MIPS-64 has indexed addressing for floating-point loads and stores. (These addressing modes are
described in Figure 2.18.)

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branchistakenifthe condition holds. The seton less than instructions (SLT, SLTI,
SLTU, SLTIU) compare two operands and then set the destination register to 1
if less and to 0 otherwise. These instructions are enough to synthesize the full set
of relations. Because of the popularity of comparisons to 0, MIPS includes special
compare and branch instructions for all such comparisons: greater than or equal to
zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less
than zero (BLTZ). Of course, equal and not equal to zero can be synthesized using
r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for floating point
with separate floating-point compare and branch instructions; MIPS IV expanded
this to eight floating-point condition codes, with the floating point comparisons
and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point
compares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition
holds and to 0 otherwise. The branch instructions compare one register to 0 (BEQ,
BGE, BGT, BLE, BLT, BNE) or its least significant bit to 0 (BLBC, BLBS) and
then branch if the condition holds.

In the future, I'm going to write x to mean "L or Q", and Rb/#b to mean "a register (RH) or a small constant in the range 0 to 255."
The Alpha AXP has no corresponding trap variant for arithmetic carry. So how would you detect carry??!

Answer: The same way you detect carry in C, or pretty much any other programming language that doesn't support carry.

To detect carry during addition, you check whether the sum Is less than either addend. If the sum is less than one addend, then it will
also be less than the other addend, so use whichever addend is most convenient.

» Rc = Ra + Rb, with Rd receiving carry
v Assumes Rc 1s not the same as Ra
ADDXx Ra, Rb, Rc : RC = Ra + Rb
CMPULT Ra, Rc, Rd : Rd = carry

» Rc = Ra + Rb, with Rd receiving carry
v Assumes Rc 1s not the same as Rb
ADDXx Ra, Rb, Rc : RC = Ra + Rb
CMPULT Rb, Rc, Rd : Rd = carry

» Rc = Rc + Rc, with Rd receiving carry
» Assumes Rd is distinct from Rc

BIS Rd, Rc, Rc : Rd = RC
ADDXx Rc, Rc, Rc : Rc = RC + RC
CMPULT Rd, Rc, Rd : Rd = carry

The last case is where the output overwrites both inputs, so we have to stash one of the inputs in B4 so we can compare it to the result
afterwards.

To detect borrow during subtraction, you check whether the subtrahend is greater than the minuend.

» Rc = Ra - Rb, with Rd receiving borrow
» Assumes Rd is distinct from both inputs
CMPULT Ra, Rb, Rd : Rd borrow
SUBx Ra, Rb, Rc : Rc = Ra - Rb

illw _
v Raymond Chen - MSFT

Restore Save

Saved
window
pointer

Current
window
pointer

S ATTHCE aEE

C6296447 .93
PGY.1.Y GS1 USA
STP 1031 LCA

280

-300

Mporpamu ,,3apasen, cat!”

CnepBat 27 nporpamu ,,3apaBen, cBAT 3a 16 pa3nmnu-
HU MUKPOMPOLLECOPHU APXUTEKTYPU U 19 pas3nnyHu
onepauuoHHN CUCTEMU, MOBEYETO HANMMCaHU OT aBTO-
pa (opyry 4acTUYHO B3aMMCTBAHU OT APYrv aBTOPU) U
M3npobBaHM IMYHO OT HErO Ha PeasiIHM KoMMNoTPKU (He
emynatopu). EAHOMMEHHNTE apXUTEKTYPU C Pa3/IMYHA
paspagHocT (16, 32 n 64 6uTta) ce 6pPOAT 3a pas3/INYHK
nopaamn ronsmaTa pPas3/IMKa B 3aperKJaHeTo Ha aapeca
Ha HM3a, HAYMHA HA U3BMKBAHE Ha AAQPOTO UM CUCTe-
MaTa OT KOMaHAU. B nporpamute He ca U3NON3BaHWU
HMKAKBU BbHLWHW 06EKTHU pannoBe unm bnbnnoTekn.

hellodos.s NMporpama ,3npasen, cBAT!“ 3a 8086+ Ha MS-DOS (NASM)

org 0x100
MOV AH, 9
MOV DX, MSG
INT 0x21
RET

MSG: DB "Hello, world!'!",13,10,'$"

helloos2.s Mporpama ,3npasei, cBaAT!*” 3a 1386+ Ha 0S/2 / eCS (NASM)

; nasm -f obj helloos2.s
; Link386 /pm:vio helloos2,,nul,052386;

segment class=code use32 flat
extern Dos32Write,Dos32Exit

..start:
PUSH WRITTEN
PUSH LEN
PUSH MSG
PUSH 1
CALL Dos32Write
PUSH 0
PUSH 0

CALL Dos32Exit

segment class=data use32 flat

MSG: db "Hello, world!", 13,10
LEN equ $ — MSG

WRITTEN: resd 1

segment class=stack stack use32 flat
resd 1024

segment bss class=bss use32
resd 1

group dgroup bss

hellowin.s

Nporpama ,3aopaBent, cBaT!“ 3a 1386+ Ha Windows (gas)

as -0 hellowin.obj hellowin.s; golink —console hellowin.obj kernel32.dll

.global Start

Start:
PUSHL
CALL
PUSHL
PUSHL
PUSHL
PUSHL
PUSHL
CALL
CALL

.data

MSG: .ascil

LEN = .

WRITTEN:.int

$-11
GetStdHandle
$0

$WRITTEN

$LEN

$MSG

%SEAX
WriteConsoleA
ExitProcess
"3npasen, cBat!\n\n"
- MSG

0

H HHEHHIFHRIFEHIFHRHB

BxooHa TO4Ka

STD_OUTPUT_HANDLE (cTaHpapTeH u3xopn)
BbpHu N Ha dannosua geckpuntop
3anaceH apryMeHT, Tpabsa pa 6boe NULL
bpon penctBuTenHo 3anucaHm banmtose
ObnxuHa Ha Hu3a (UTF-8)

Aopec Ha Hu3a

l. Ha pgeckpunTopa Ha CTaHOapTHUA KU3Xof
OyHKUMATA npeMaxBa OT CTeka 20 bauTa
3aBbpliBaHe Ha npoueca

CHCP 65001, 3a pa ce BuMOM TO3U TEKCT

hellobsd.s Nporpama ,3nopaseit, cBaT!“ 3a 1386+ Ha BSD/0S (gas)
.globl _start,main
_start: # BxopgHa TO4YkKa
main: # Touyka Ha npekbcCcBaHe Ha gdb
PUSH $LEN # ObnxuHa Ha Hu3a (UTF-8)
PUSH $MSG # Appec Ha Hu3a
PUSH $1 # ®aunoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
SUB $4,%ESP # BSD u3ucksa owe 1 gymMa B CTeka
MOV $4,%EAX # SYS_write (3anuc: /usr/include/sys/syscall.h)
LCALL $7,%0 # N3BMKanW cboTBeTHaTa PyHKUMS Ha agpoTo Ha OC
MOV $1,%EAX # SYS_exit (3aBbpwBaHe Ha npoueca)
LCALL $7,%0
.data
MSG: .ascii "3ppaBen, ceat!\n\n"

LEN = .

- MSG

hellounx.s

Mporpama ,3ppasen, cBaT!*“ 3a 1386+ (as Ha UnixWare)

.globl
_start:
main:

.data
MSG:

BxogHa To4ka

Toyka Ha npekbcBaHe Ha debug

ObnxuHa Ha Hu3a (UTF-8)

Aopec Ha Hu3a

®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
Unixware kato BSD u3uckea ouwe 1 goyMa B CTeKa
SYS_write (3anuc: /usr/include/sys/syscall.h)
N3BuMKanm cboTBeTHaTa ¢yHKUMA Ha aapoTo Ha OC
SYS_exit (3aBbpwBaHe Ha npoueca)

_start,main

#

#
push $LEN #
push $MSG #
push $1 #
sub $4,%esp #
mov $4,%eax #
lcall $7, %0 #
mov $1,%eax #
lcall $7, %0
.ascii "3ppaBen, ceat!\n\n"

LEN = . - MSG

hellomac.s NporpamMa ,3ppaBenn, cBaT!“ 3a 1386+ Ha Mac 0S X (gas)

.globl start,main

start: # BxopgHa TO4YkKa

main: # Touyka Ha npekbcCcBaHe Ha gdb
PUSH $LEN # ObnxuHa Ha Hu3a (UTF-8)
PUSH $MSG # Appec Ha Hu3a
PUSH $1 # ®aunoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
SUB $4,%ESP # Mac 0S X (u BSD Bbobue) u3uckeat oue 1 gyma B CTeka
MOV $4,%EAX # SYS_write (3anuc: /usr/include/sys/syscall.h)
INT $0x80 # N3BUKanM cboTBeTHaTa QPyHKUMA Ha agpoTo Ha OC
MOV $1,%EAX # SYS_exit (3aBbpwBaHe Ha npoueca)
INT $0x80

.data

MSG: .ascii "3ppaBen, ceat!\n\n"

LEN = . - MSG

hellofbs.s NporpamMa ,3ppaBen, cBaT!“ 3a 1386+ Ha FreeBSD (gas)
.globl _start,main
_start: # BxopgHa TO4YkKa
main: # Touyka Ha npekbCcBaHe Ha gdb
PUSH EBP # ,3auenka” 3a gdb, 3a pga Bnese B CTbMKOB PEXUM
MOV %ESP,%EBP
PUSH $LEN # ObnxuHa Ha Hu3a (UTF-8)
PUSH $MSG # Appec Ha Hu3a
PUSH $1 # ®aunoB peckpuntop 1: stdout (cTtaHpapTeH u3xopn)
SUB $4,%ESP # BSD u3ucksa owe 1 gymMa B CTeka
MOV $4,%EAX # SYS_write (3anuc: /usr/include/sys/syscall.h)
INT $0x80 # N3BUKanM cboTBeTHaTa QPyHKUMA Ha agpoTo Ha 0OC
MOV $1,%EAX # SYS_exit (3aBbpwBaHe Ha npoueca)
INT $0x80
.data
MSG: .ascii "3ppaBen, ceat!\n\n"

LEN = . - MSG

helloopn.s NporpamMa ,3ppaBenn, cBaT!“ 3a 1386+ Ha OpenBSD (gas)

as -o helloopn.o helloopn.s
1ld ——dynamic-linker /usr/libexec/1ld.so —o helloopn helloopn.o

.globl _start,main

_start: # BxopgHa TO4YkKa

main: # Touyka Ha npekbCcBaHe Ha gdb
PUSH EBP # ,3auenka” 3a gdb, 3a pa Bnese B CTbMKOB PEXUM
MOV %ESP,%EBP
PUSH $LEN # ObnxuHa Ha Hu3a (UTF-8)
PUSH $MSG # Appec Ha Hu3a
PUSH $1 # ®aunoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
SUB $4,%ESP # BSD u3ucksa owe 1 gymMa B CTeka
MOV $4,%EAX # SYS_write (3anuc: /usr/include/sys/syscall.h)
INT $0x80 # N3BUKanM cboTBeTHaTa QPyHKUMA Ha agpoTo Ha OC
MOV $1,%EAX # SYS_exit (3aBbpwBaHe Ha npoueca)
INT $0x80

.data

MSG: .ascii "3ppaBen, ceat!\n\n"

LEN = . - MSG

.section ".note.netbsd.ident", "a", %note
.p2align 2
.int 8,4,1
.asciz "OpenBSD"
.1nt 0

hello386.s Nporpama ,3apaBen, cBaT!“ 3a 1386+ Ha Linux (gas)

.global _start,main

_start: # BxooHa TO4Ka

main: # Touyka Ha npekbcCcBaHe Ha gdb
MOV $4,%EAX # SYS_write (3anuc: /usr/include/{apxut.}/asm/unistd.h
MOV $1,%EBX # ®aunos peckpuntop 1: stdout (cTtaHpapteH u3xopn)
MOV $MSG, SECX# Apgpec Ha Hu3a
MOV $LEN,SEDX# ObnxuHa Ha Hu3a (UTF-8)
INT $0x80 # N3BMKanW cboTBeTHaTa PyHKUMS Ha agpoTo Ha OC
MOV $1,%EAX # SYS_exit (3aBbpwBaHe Ha npoueca)
INT $0x80

.data

MSG: .ascii "3pgpaseun, ceat!\n\n"

LEN = . - MSG

hellomnx.s

Nporpama ,3aopaBent, cBaT!“ 3a 1386+ Ha MINIX 3 (gas)

.globl _start
_start:

BxopHa TO4YkKa

$1,%EAX # lMony4yaten Ha cbobweHneTo

$MSG_write,%EBX # Yka3aTten KbM CTpyKTypaTa Ha CbobueHueTto
$3,%ECX # SENDREC (npM-npp, BX. /usr/include/minix/ipcconst.h)
$0x21 # lpepan cbobuweHue Ha MuUKposapoTo 4pe3 SYS386_VECTOR
$MSG_exit,SEBX

$3,%ECX

$0x21

"3npasen, cBat!\n\n"
4: WRITE (/usr/include/minix/callnr.h), 1: stdout (cTaHp.un3X.

.int 0,4,1, MSG_write - STR, 0,STR # Agopec Ha 3anucBaHUS HU3

MOV
MOV
MOV
INT
MOV
MOV
INT
.data
STR: .ascii
MSG_write:
.Space 8
MSG_exit:
.int 90,1

.Space 24

Uanoto cbobueHne e 32 bauTta; OOTYyK ca 24, 3Hayu ocCcTaBaT ole 8

1: EXIT (3aBbpuu npoueca, Bx. /usr/include/minix/callnr.h)
DonbnHu po 32 6auta (32 - 8 = 24)

helloind.s NporpamMa ,3pnpasenn, cBaT!“ 3a AMD64 Ha OpenIndiana (gas)

as —64 -0 helloind.o helloind.s && 1ld —-m elf_x86_64 -o helloind helloind.o

.global _start,main

_start: # BxopoHa ToOYkKa

main: # Touyka Ha npekbcBaHe Ha gdb
MOV $4, %RAX # SYS_write (3anuc: BX. /usr/include/sys/syscall.h)
MOV $1,%RDI # OaunoB peckpuntop 1: stdout (cTtaHpapTeH u3xon)
LEA MSG, %RSI # ApQpec Ha Hu3a
MOV $LEN,%RDX # [ObnxuHa Ha Hu3a (UTF-8)
SYSCALL # N3BMKaW cboTBeTHaTa QPyHKUMA Ha agpoTo Ha OC
MOV $1,%EAX # SYS_exit (3aBbpuBaHe Ha npoueca)
SYSCALL

.data

MSG: .ascii "3pgpaseun, ceat!\n\n"

LEN = . - MSG

hellom64.s NporpamMa ,3ppaBen, cBat!“ 3a AMD64 Ha Mac 0S X (gas)

as -0 hellom64.o0 hellomb64.s
1d —-macosx_version_min 10.7 -o hellom64 hellom64.o0

#
2 n 24 no—pony ca SYSCALL_CLASS_UNIX n SYSCALL_CLASS_SHIFT, pe¢uHupaHu B
http://opensource.apple.com/source/xnu/xnu-1228/osfmk/mach/i386/syscall_sw.h

.globl start,main

start: # BxopoHa ToOuKa

main: # Touyka Ha npekbcCcBaHe Ha gdb
MOV $(2 << 24 | 4),%RAX # SYS_write (/usr/include/sys/syscall.h)
MOV $1,%RDI # OannoB peckpuntop 1l: CcTaHOapTeH wu3xof
LEA MSG(%RIP),%RSI # Appec Ha Hu3a
MOV LEN (%RIP) ,%RDX # ObnXuHa Ha Hu3a (UTF-8)
SYSCALL # N3BMKaW CcbOTBeTHaTa PYHKUMS Ha AOpOTO
MOV $(2 << 24 | 1),%RAX # SYS_exit (3aBbpwBaHe Ha npoueca)
SYSCALL

.data

MSG: .ascii "3ppasen, cat!\n\n"

LEN: . Long . — MSG

helloarm.s

NporpamMa ,3npasen, cBAT!“ 3a ARM Ha Linux (gas)

.global _start,main

_start:
main:

.data
MSG:

MOV
MOV
LDR
MOV
SWI
MOV
SWI

//

//
R7,#4 //
RO,#1 //
R1,=MSG //
R2,#LEN //
0 //

R7,#1 //

0

BxogHa To4ka

Touyka Ha npekbcBaHe Ha gdb

SYS_write (3anuc: /usr/include/<{apxut.}/asm/unistd.h
®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)

Aopec Ha Hu3a

ObnxuHa Ha Hu3a (UTF-8)

N3BuMKanm cboTBeTHaTa ¢yHKUMa Ha aapoTo Ha OC

SYS_exit (3aBbpwBaHe Ha npoueca)

.ascii "3ppaBen, ceat!\n\n"
- MSG

LEN = .

hellonet.s NporpamMa ,3npasen, cBaT!“ 3a ARM Ha NetBSD (gas)

.global _start,main

_start: // BXxogHa TO4Ka
main: // To4yka Ha npekbcBaHe Ha gdb
MOV RO, #1 // O®annos peckpuntop 1: stdout (cTtaHpmapTeH u3xopn)
LDR R1,=MSG // Appec Ha Hu3a
MOV R2,#LEN // ObnxuHa Ha Hu3a (UTF-8)
SWI 0xAQ0004// 4: SYS_write (3anuc, BX. /usr/include/sys/syscall.h)
SWI 0xA00001// 1: SYS_exit (3aBbpwBaHe Ha npoueca)
.data
MSG: .ascii "3ppaBen, ceat!\n\n"

LEN = . - MSG

.section ".note.netbsd.ident", "a", %note

.int 7,4,1
.ascii "NetBSD"
.p2align 2

.int 102000000/ /Bepcua 1.2 e nbpBaTta, npeHeceHa Ha ARM

helloab4.s

NporpamMa ,3pnpasen, cBat!“ 3a ARM64 Ha FreeBSD (clang)

FreeBSD: clang -c -0 helloa64.0 helloab4.s; ld —o helloa64 helloab4.o0

.global _start,main

_start:

main:
MOV
MOV
LDR
MOV
SVC
MOV
SVC

.data

X8, #4
X0, #1
X1,=MSG
X2,#27
0

X8, #1

0

//
//
//
//
//
//
//
//

BxogHa To4ka

Touyka Ha npekbcBaHe Ha gdb

SYS_write (3anuc: /usr/include/sys/syscall.h)
®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
Aopec Ha Hu3a

ObnxuHa Ha Hu3a (UTF-8)

N3BuMKanm cboTBeTHaTa QyHKUMa Ha aapoTo Ha OC
SYS_exit (3aBbpwBaHe Ha npoueca)

MSG: .ascii "3ppaBen, ceat!\n\n"

helloaab.s

Nporpama ,3npasen, cBaT!“ 3a ARM64 Ha Linux (gas)

.global _start,main

_start:
main:

.data
MSG:

MOV
MOV
LDR
MOV
SVC
MOV
SVC

//

//
X8,#64 //
X0,#1 //
X1,=MSG //
X2,#LEN //
0 //
X8,#93 //
0

BxogHa To4ka

Touyka Ha npekbcBaHe Ha gdb

SYS_write (3anmuc: /usr/include/asm—-generic/unistd.h)
®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)

Aopec Ha Hu3a

ObnxuHa Ha Hu3a (UTF-8)

N3BuMKanm cboTBeTHaTa ¢yHKUMa Ha aapoTo Ha OC

SYS_exit (3aBbpwBaHe Ha npoueca)

.ascii "3ppaBen, ceat!\n\n"
- MSG

LEN = .

helloppc.s NporpamMa ,3pnpasenn, cBat!“ 3a PowerPC Ha Mac 0S X (gas)

.globl start,_main
start: » BxogoHa TO4Ka

_main: ; Toyka Ha npekbcBaHe Ha gdb
i ro, 4 ; SYS_write (3anuc: /usr/include/sys/syscall.h)
11 r3,1 ; ®annoB peckpuntop 1: stdout (cTaHpapTeH u3xop
lis r4,hil6 (MSG) ; 3apeou cTapwaTa 4acCT Ha agpeca Ha Hu3a, << 16
addi r4,r4,1016(MSG) ; [obaBu Mnapgwata My 4acT
i r5,27 ; ObnxuHa Ha Hu3a (UTF-8)
SC ; NU3BnKanm cboTBeTHaTa QyHKUMSA Ha sgpoTo Ha OC
nop ; lle 6bpe npeckovyeHa npu ycneweH SC (SysCall)
i ro,1 ; SYS_exit (3aBbpwBaHe Ha npoueca)
SC

.data

MSG: .ascii "3ppaBen, ceat!\n\n"

helloaix.s

NMporpama ,3pnpasen, cBaAT!“ 3a POWER (as Ha AIX 7.1-1115)

as —-ab4 -o helloaix.o helloaix.s && 1d -b64 -0 helloaix helloaix.o
ObnruaT nponor e HeobxomuMm, 3a ga paboTum kKomaHpaTa "start" Ha gdb.

BHUMAHWE: HoMepaTa Ha CUCTEMHUTE U3BWKBAHUA BaxaT caMo 3a AIX Bepcwusd
7100-00-03-1115 (oslevel -s), u 1O camo 3a 64-6uTOBM nporpamu!

.csect main[DS]
.globl __start

__start:
. Lllong .main

BXxoOHa TO4Ka

.csect .text[PR]

Touyka Ha npekbCBaHe Ha gdb
4,T.MSG(2) # Appec Ha Hu3a
2,312 # write (3anuc — Bx. 3abenexkaTta 3a HoMepaTa no-rope!)

3,1 # ®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)

5,LEN # [ObnxuHa Ha Hu3a (UTF-8)

11 # BbpHu apgpeca Ha mflr B 1lr

6 # VMa owe 4 KOMaHOM O[O KOMaHpaTa cnep Svca;

6,6,4x4 # 3atoBa Kopurupau agpeca B lr c 4 x 4,

6 # Ta Oa yKa3Ba KbM Hed.

0 # N3BUKanW cboTBeTHaTa QPyHKUMA Ha agpoTo Ha 0OC

2,52 # exit (3aBbpwBaHe Ha npoueca — BX. 3abenexkata 3a Nk)
0

"3npaBen, cBat!"
10,10

.globl .main
.main:
la
1i
1i
1i
bl
11: mflr
addi
mtlr
svca
1i
svca
.csect .datal[RW]
MSG: .byte
.byte
.set LEN, $ — MSG
.align 3
.toc
T.MSG: .tc

MSG[TC] ,MSG

helloirx.s Mporpama ,3npasen, cBaAT!“ 3a MIPS32 (as Ha Irix)

as —nocpp -non_shared helloirx.s; ld -non_shared -o helloirx helloirx.o

11 $4,1 # ®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
la $5,MSG # Apgpec Ha Hu3a

i $6,27 # [ObnxuHa Ha Hu3a (UTF-8)

i $2,1004 # SYS write (3anmuc: /usr/include/sys.s)

syscall # N3BMKanW cbOoTBeTHaTa PyHKUMS Ha agpoTo Ha OC

i $2,1001 # SYS_exit (3aBbpwBaHe Ha npoueca)

syscall

.data
MSG: .ascii "3ppaseun, cBAT!\n\n"

helloib4.s NMporpama ,3npasen, cBaAT!“ 3a MIPS64 (as Ha Irix)

as —-64 -nocpp —-non_shared helloirx.s; 1ld —-non_shared —-o helloirx helloirx.o

11 $4,1 # ®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
dla $5,MSG # Apgpec Ha Hu3a

i $6,27 # [ObnxuHa Ha Hu3a (UTF-8)

i $2,1004 # SYS write (3anmuc: /usr/include/sys.s)

syscall # N3BMKanW cbOoTBeTHaTa PyHKUMS Ha agpoTo Ha OC

i $2,1001 # SYS_exit (3aBbpwBaHe Ha npoueca)

syscall

.data
MSG: .ascii "3ppaseun, cBAT!\n\n"

hellosun.s NporpamMa ,3ppasenn, cBat!“ 3a SPARC Ha Solaris (gas)
.globl _start,main
_start: ! BxogHa TO4Ka
main: I Touka Ha npekbcBaHe Ha gdb
MOV 1,%00 I O0annoB peckpuntop 1: stdout (cTtaHmapTteH u3xopn)
SET MSG,%01 ! Agpec Ha Hu3a
MOV LEN,%02 ! ObnxuHa Ha Hu3a (UTF-8)
MOV 4,%91 I SYS_write (3anuc: /usr/include/sys/syscall.h)
TA 8 I U3BMKanm cboTBeTHaTa ¢yHKUMA Ha aapoTo Ha OC
MOV 1,%91 I SYS_exit (3aBbpwBaHe Ha npoueca)
TA 8
.data
MSG: .ascii "3pgpaseun, ceat!\n\n"

LEN = . - MSG

hellos64.s MNporpama ,3apaseit, cBaT!“ 3a SPARC64 Ha Solaris (gas)

I as -Av9 -64 -0 hellos64.0 hellos64.s
I 1d -Av9 -m elf64_sparc -o hellos64 hellos64.o0

.globl _start,main

_start: ! BxogHa TO4Ka

main: I Touka Ha npekbcBaHe Ha gdb
MOV 1,%00 I O0annoB peckpuntop 1: stdout (cTaHmapTeH u3xopn)
SETX MSG,%02,%01 ! Agpec Ha Hu3a
MOV LEN,%02 ! ObnxuHa Ha Hu3a (UTF-8)
MOV 4,%91 I SYS_write (3anuc: /usr/include/sys/syscall.h)
TA 0x40 I U3BMKan cboTBeTHaTa ¢yHKUMA Ha aapoTo Ha OC
MOV 1,%91 I SYS_exit (3aBbpwBaHe Ha npoueca)
TA 0x40

.data

MSG: .ascii "3pgpaseun, ceat!\n\n"

LEN = . - MSG

S Nporpama ,3npasent, cBaT!“ 3a PA-RISC (as Ha HP-UX)

hellopar.

. code

.export $

$STARTS
L
L
L
L
L
B
L
B
L

.data

MSG

STARTS$

DIL 0x180000,%r18 ’
DI 4,%r22 ;
DI 1,%r26 ’
DIL %MSG,%r25 ;
DO %MSG(%r25) ,%r25;
E,L 4(%sr7,%rl18) ;
DI 27 ,%r24 ;
E 4(%sr7,%rl18)

DI 1,%r22 ’

BxopHa ToO4kKa

» 0x180000 << 11 = 0xCO00VOVOO, 6a3a Ha cnop.ob.
; SYS_write (/usr/include/sys/scall_define.h)
; Q®annoB peckpuntop 1: stdout (cTaHpapTeH u3xop,

3apeon crtapwaTta 4YacT Ha agpeca Ha Hu3a, << 11
ONo6aBn Mnapumte My 11 6uta Kato oTMeCTBaHe

; N3Bukanm PyHkumaTa Ha appoTto Ha OC (oTnoxeHo)
; [Obn¥uWHa Ha Hu3a (n3nbnHABa ce npeou BE,L!)

SYS_exit (3aBbpuwBaHe; wu3nbfHABa ce npeaun BE)

.string "3ppasen, cat!\n\n"

.subspa $UNWIND_END$,access=0x1F

$UNWIND_E

export $UNWIND_END
ND

hellop64.s NMporpama ,3npasen, cBAT!“ 3a PA-RISC64 (as Ha HP-UX)

; as —o0 hellop64.o0 hellop64.s; ld —-noshared —o hellop64 hellop64.o

. level 2.0w

. code

.export $STARTS

$START$; BxopHa TO4Ka
ADDI MSG-$START$-3,%r31,%r25; Agpec Ha Hu3a
LDI 1,%r26 ; ®annoB peckpuntop 1: stdout (cTaHpapTeH u3xop
LDD %MSG(%r30),%rl ; MpepotBpatu '"cannot execute binary file"
LDI 4,%r22 ; SYS_write (/usr/include/sys/scall_define.h)
LDIL %0x60000800,%r1
ADD %rl,%srl,%rl18 ; 2 x 0x60000800 = 0xC0001000
BE, L 0(%sr4,%rl18) ; W3BMKan ¢yHKumsaTa Ha sgpoto Ha OC (oTnoxeHo)
LDI 27 ,%r24 ; ObnxuHa Ha Hu3a (u3nbnHaBa ce npeoun BE,L!)
BE 0(%sr4d,%r18)
LDI 1,%r22 ; SYS_exit (3aBbpuwBaHe; u3nbiHABa ce npeoun BE)

MSG .string "3ppasen, cat!\n\n"

hellovax.s

NporpamMa ,3ppasen, cBaT!*“ 3a VAX Ha Ultrix (gas)

.globl
_start:

.data
MSG:

_start

.word
PUSHL
PUSHAL
PUSHL
PUSHL
MOVL
CHMK
PUSHL
MOVL
CHMK

0
$LEN
MSG
$1

$3
SP, AP
$4

$0
SP, AP
$1 #

HHFHIFEHHRHR

BxonoHa Macka (gas HaMa gupekTuBa .entry)
ObnxuHa Ha Hu3a (UTF-8)

Aopec Ha Hu3a

®annoB peckpuntop 1: stdout (cTtaHpapteH u3xopn)
Bpon apryMeHTwu

Hanpasu SP yka3aTten KbM apryMmMeHTturte

SYS_write (3anuc: /usr/sys/h/syscall.h)

SYS_exit (3aBbpwBaHe Ha npoueca)

.ascii "3ppaBen, ceat!\n\n"

LEN

= . — MSG

hellotru.s NporpamMa ,3ppasenn, cBat!“ 3a Alpha (a; as Ha Tru64)

.globl main

.ent main

main: # BxooHa TOYkKa M TOo4YKa Ha npekbcBaHe Ha gdb
ldah $29,0($27) !gpdisp!1l # pv ($27) He e BanupeH => u gp ($29) He e,
lda $29,0($29) 'gpdisp!1 # HOo 6e3 TO3M nponor b main (gdb) He paboTwu
br $27,11 # BbpHu nporpamHusa 6posy pc B pv (procedure value)

11: ldgp $29,0($27) # as pa3uwupsiBa T03M Makpoc kaTto ldah/lda no-rope
ldah $17,MSG($29) !gprelhigh!2 # C7.16 6. Ha 32-6. 3HAaKOBO OTM. OT gp
lda $17,MSG($17) !gprellow!2 # Mnapwu 16 6uTa Ha rOpPHOTO OTMECTBaHe
1dil $16,1 # Oaunos peckpuntop 1: stdout (cTaHmapTeH u3xopn)
1dil $18,27 # [ObnxuHa Ha Hu3a (UTF-8)
1dil $0,4 # SYS_write (3anuc: /usr/include/sys/syscall.h)
call_pal 0x83 # WN3Bukanm cboTBeTHaTa QYyHKUMSA Ha AapoTo Ha OC
1dil $0,1 # SYS_exit (3aBbpwuBaHe Ha npoueca)
call_pal 0x83

.end main

.data

MSG: .ascii "3ppasen, cat!\n\n"

hellovms.mar NporpamMa ,3pnpasenn, cBat!“ 3a IA-64/a Ha OpenVMS (MACRO)

.psect data wrt, noexe
MSG: .ascid "Hello, Itanium!"<13><10>
.psect code nowrt, exe
.entry start,0
PUSHAQ MSG
CALLS #1,G”LIB$PUT_OUTPUT
RET

.end start

