
3-581

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack

Description

This instruction decrements the stack pointer and then stores the source operand on the top of
the stack. The address-size attribute of the stack segment determines the stack pointer size (16
bits or 32 bits), and the operand-size attribute of the current code segment determines the
amount the stack pointer is decremented (two bytes or four bytes). For example, if these address-
and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is decremented by four
and, if they are 16, the 16-bit SP register is decremented by 2.(The B flag in the stack segment’s
segment descriptor determines the stack’s address-size attribute, and the D flag in the current
code segment’s segment descriptor, along with prefixes, determines the operand-size attribute
and also the address-size attribute of the source operand.) Pushing a 16-bit operand when the
stack address-size attribute is 32 can result in a misaligned the stack pointer (that is, the stack
pointer is not aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP
register is used as a base register for computing the operand address, the effective address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

Intel Architecture Compatibility

For Intel Architecture processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is also true in
the real-address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction
pushes the new value of the SP register (that is the value after it has been decremented by 2).

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

3-582

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (Continued)

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP ← ESP − 4;
SS:ESP ← SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP ← ESP − 2;
SS:ESP ← SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

IF OperandSize = 16
THEN

SP ← SP − 2;
 SS:SP ← SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP ← SP − 4;
SS:SP ← SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-718

INSTRUCTION SET REFERENCE

XOR—Logical Exclusive OR

Description

This instruction performs a bitwise exclusive OR (XOR) operation on the destination (first) and
source (second) operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location. (However, two memory operands cannot be used in one instruc-
tion.) Each bit of the result is 1 if the corresponding bits of the operands are different; each bit
is 0 if the corresponding bits are the same.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8 (sign-extended)

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8 (sign-extended)

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8

3-402

INSTRUCTION SET REFERENCE

MOV—Move

NOTES:

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (refer to the
following “Description” section for further information).

Description

This instruction copies the second operand (source operand) to the first operand (destination
operand). The source operand can be an immediate value, general-purpose register, segment
register, or memory location; the destination register can be a general-purpose register, segment
register, or memory location. Both operands must be the same size, which can be a byte, a word,
or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET
instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16** Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

3-23

INSTRUCTION SET REFERENCE

ADD—Add

Description

This instruction adds the first operand (destination operand) and the second operand (source
operand) and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) When an imme-
diate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

3-21

INSTRUCTION SET REFERENCE

ADC—Add with Carry

Description

This instruction adds the destination operand (first operand), the source operand (second
operand), and the carry (CF) flag and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an immediate, a
register, or a memory location. (However, two memory operands cannot be used in one instruc-
tion.) The state of the CF flag represents a carry from a previous addition. When an immediate
value is used as an operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

3-372

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter

Description

These instructions perform a loop operation using the ECX or CX register as a counter. Each
time the LOOP instruction is executed, the count register is decremented, then checked for 0. If
the count is 0, the loop is terminated and program execution continues with the instruction
following the LOOP instruction. If the count is not zero, a near jump is performed to the desti-
nation (target) operand, which is presumably the instruction at the beginning of the loop. If the
address-size attribute is 32 bits, the ECX register is used as the count register; otherwise the CX
register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0

E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count ≠ 0 and ZF=0

3-373

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter (Continued)

Operation

IF AddressSize = 32
THEN

Count is ECX;
ELSE (* AddressSize = 16 *)

Count is CX;
FI;
Count ← Count – 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN

IF (ZF =1) AND (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)

THEN
IF (ZF =0) AND (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
FI;

ELSE
Terminate loop and continue program execution at EIP;

FI;

3-643

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right

Description

This instruction shifts the first operand (destination operand) to the right the number of bits spec-
ified by the third operand (count operand). The second operand (source operand) provides bits
to shift in from the left (starting with the most significant bit of the destination operand). The
destination operand can be a register or a memory location; the source operand is a register. The
count operand is an unsigned integer that can be an immediate byte or the contents of the CL
register. Only bits 0 through 4 of the count are used, which masks the count to a value between
0 and 31. If the count is greater than the operand size, the result in the destination operand is
undefined.

If the count is one or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from
r16 in from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16
in from the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from
r32 in from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32
in from the left

3-644

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right (Continued)

Operation

COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i – COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[inBits,i+COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is one or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than one
bit, the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is
0, the flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-714

INSTRUCTION SET REFERENCE

XCHG—Exchange Register/Memory with Register

Description

This instruction exchanges the contents of the destination (first) and source (second) operands.
The operands can be two general-purpose registers or a register and a memory location. If a
memory operand is referenced, the processor’s locking protocol is automatically implemented
for the duration of the exchange operation, regardless of the presence or absence of the LOCK
prefix or of the value of the IOPL. Refer to the LOCK prefix description in this chapter for more
information on the locking protocol.

This instruction is useful for implementing semaphores or similar data structures for process
synchronization. Refer to Section 7.1.2., Bus Locking in Chapter 7, Multiple-Processor
Management of the Intel Architecture Software Developer’s Manual, Volume 3, for more infor-
mation on bus locking.

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

Operation

TEMP ← DEST
DEST ← SRC
SRC ← TEMP

Flags Affected

None.

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange AX with r16

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange EAX with r32

86 /r XCHG r/m8,r8 Exchange r8 (byte register) with byte from r/m8

86 /r XCHG r8,r/m8 Exchange byte from r/m8 with r8 (byte register)

87 /r XCHG r/m16,r16 Exchange r16 with word from r/m16

87 /r XCHG r16,r/m16 Exchange word from r/m16 with r16

87 /r XCHG r/m32,r32 Exchange r32 with doubleword from r/m32

87 /r XCHG r32,r/m32 Exchange doubleword from r/m32 with r32

3-531

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack

Description

This instruction loads the value from the top of the stack to the location specified with the desti-
nation operand and then increments the stack pointer. The destination operand can be a general-
purpose register, memory location, or segment register.

The current operand-size attribute of the stack segment determines the stack pointer size (16 bits
or 32 bits—the source address size), and the operand-size attribute of the current code segment
determines the amount the stack pointer is incremented (two bytes or four bytes). For example,
if these address- and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is
incremented by four and, if they are 16, the 16-bit SP register is incremented by two. (The B flag
in the stack segment’s segment descriptor determines the stack’s address-size attribute, and the
D flag in the current code segment’s segment descriptor, along with prefixes, determines the
operand-size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (refer to the “Operation” section
below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose corre-
sponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register
is null.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to 0h as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

3-532

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt1. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* copy a word *)

ESP ← ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST ← SS:SP; (* copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* copy a doubleword *)
SP ← SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI
POP SS
POP ESP

interrupts may be recognized before the POP ESP executes, because STI also delays interrupts for one
instruction.

3-608

INSTRUCTION SET REFERENCE

RET—Return from Procedure

Description

This instruction transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made to the
instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. Refer to Section
4.3., Calling Procedures Using CALL and RET in Chapter 4, Procedure Calls, Interrupts, and
Exceptions of the Intel Architecture Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes
from stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from
stack

3-609

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP ← ESP + SRC; (* release parameters from stack *)
ELSE (* StackAddressSize=16 *)

SP ← SP + SRC; (* release parameters from stack *)
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;

Data processing

Addressing mode 1

MOV

3-53ARM Architecture Reference Manual
ARM DUI 0100B

A
R

MMOV{<cond>}{S} Rd, <shifter_operand>

Description The MOV (Move) instruction is used to:
• move a value from one register to another

• put a constant value into a register

• perform a shift without any other arithmetic or logical operation

When the PC is the destination of the instruction, a branch occurs, and
MOV PC, LR can be used to return from a subroutine call (see the B and BL
instructions) and to return from some types of exception (See 2.5 Exceptions on
page 2-6).

MOV moves the value of <shifter_operand> to the destination register Rd,
and optionally updates the condition code flags (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z and C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 0 1 S SBZ Rd shifter_operand

LDR

3-44 ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Load and store

Addressing mode 2

LDR{<cond>} Rd, <addressing_mode>

Description Combined with a suitable addressing mode, the LDR (Load register) instruction
allows 32-bit memory data to be loaded into a general-purpose register where its
value can be manipulated. If the destination register is the PC, this instruction
loads a 32-bit address from memory and branches to that address (precede
the LDR instruction with MOV LR, PC to synthesize a branch and link).

Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

LDR loads a word from the memory address calculated by <addressing_mode>
and writes it to register Rd. If the address is not word-aligned, the loaded data is
rotated so that the addressed byte occupies the least-significant byte of
the register. If the PC is specified as register Rd, the instruction loads a branch to
the address (data) into the PC.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[1:0] == 0b00

Rd = Memory[<address>,4]
else if <address>[1:0] == 0b01

Rd = Memory[<address>,4] Rotate_Right 8
else if <address>[1:0] == 0b10

Rd = Memory[<address>,4] Rotate_Right 16
else /* <address>[1:0] == 0b11 */

Rd = Memory[<address>,4] Rotate_Right 24

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by <addressing_mode> .

Data Abort: If a data abort is signalled and <addressing_mode> uses pre-
indexed or post-indexed addressing, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U 0 W 1 Rn Rd addressing mode specific

Data processing

Addressing mode 1

ADD

3-31ARM Architecture Reference Manual
ARM DUI 0100B

A
R

MADD{<cond>}{S} Rd, Rn, <shifter_operand>

Description The ADD instruction adds the value of <shifter_operand> to the value of
register Rn, and stores the result in the destination register Rd. The condition code
flags are optionally updated (based on the result).

ADD is used to add two values together to produce a third.

To increment a register value (in Rx), use:
ADD Rx, Rx, #1

Constant multiplication (of Rx) by 2n+1 (into Rd) can be performed with:
ADD Rd, Rx, Rx LSL #n

To form a PC-relative address, use:
ADD Rs, PC, #offset

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn + <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + <shifter_operand>)
V Flag = OverflowFrom (Rn + <shifter_operand>)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 0 0 S Rn Rd shifter_operand

ADC

3-30 ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Data processing

Addressing mode 1

3
3.15 Alphabetical List of ARM Instructions

ADC{<cond>}{S} Rd, Rn, <shifter_operand>

Description The ADC (Add with Carry) instruction adds the value of <shifter_operand>
and the value of the Carry flag to the value of register Rn, and stores the result in
the destination register Rd. The condition code flags are optionally updated (based
on the result).

ADC is used to synthesize multi-word addition. If register pairs R0,R1 and R2,R3
hold 64-bit values (where 0 and R2 hold the least-significant words), the following
instructions leave the 64-bit sum in R4,R5:

ADDS R4,R0,R2
ADC R5,R1,R3

The instruction:
ADCS R0,R0,R0

produces a single-bit Rotate Left with Extend operation (33-bit rotate though
the carry flag) on R0. See 3-97 for more information.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

Rd = Rn + <shifter_operand> + C Flag
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + <shifter_operand> + C Flag)
V Flag = OverflowFrom (Rn + <shifter_operand> + C Flag)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 0 1 S Rn Rd shifter_operand

SUB

3-74 ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Data processing

Addressing mode 1

SUB{<cond>}{S} Rd, Rn, <shifter_operand>

Description The SUB (Subtract) instruction is used to subtract one value from another
to produce a third. To decrement a register value (in Rx) use:

SUB Rx, Rx, #1

SUB subtracts the value of <shifter_operand> from the value of register Rn,
and stores the result in the destination register Rd. The condition code flags are
optionally updated (based on the result).

SUBS is useful as a loop counter decrement, as the loop branch can test the flags
for the appropriate termination condition, without the need for a CMP Rx, #0.

Use SUBS PC, LR, #4 to return from an interrupt.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn - <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <shifter_operand>)
V Flag = OverflowFrom (Rn - <shifter_operand>)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C and V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 0 1 0 S Rn Rd shifter_operand

Branch

B BL

3-33ARM Architecture Reference Manual
ARM DUI 0100B

A
R

MB{L}{<cond>} <target address>

Description The B (Branch) and BL (Branch and Link) instructions provide both conditional and
unconditional changes to program flow. The Branch with Link instruction is used to
perform a subroutine call; the return from subroutine is achieved by copying the LR
to the PC.

B and BL cause a branch to a target address. The branch target address is
calculated by:
1 shifting the 24-bit signed (two’s complement) offset left two bits
2 sign-extending the result to 32 bits
3 adding this to the contents of the PC (which contains the address of the

branch instruction plus 8)

The instruction can therefore specify a branch of +/- 32Mbytes.

In the BL variant of the instruction, the L (link) bit is set, and the address of the
instruction following the branch is copied into the link register (R14).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

if L == 1 then
LR = address of the instruction after the branch instruction

PC = PC + (SignExtend(<24_bit_signed_offset>) << 2)

Exceptions None

Qualifiers Condition Code
L (Link) stores a return address in the LR (R14) register

Notes Offset calculation: An assembler will calculate the branch offset address from
the difference between the address of the current instruction and the address
of the target (given as a program label) minus eight (because the PC holds
the address of the current instruction plus eight).

Memory bounds: Branching backwards past location zero and forwards over
the end of the 32-bit address space is UNPREDICTABLE.

31 28 27 26 25 24 23 0

cond 1 0 1 L 24_bit_signed_offset

3-4

The ARM Instruction Set

ARM Architecture Reference Manual
ARM DUI 0100B

3.3 The Condition Field

All ARM instructions can be conditionally executed, which means that their execution
may or may not take place depending on the values of values of the N, Z, C and V flags
in the CPSR. Every instruction contains a 4-bit condition code field in bits 31 to 28,
as shown in Figure 3-1: Condition code fields.

 Figure 3-1: Condition code fields

3.3.1 Condition codes

This field specifies one of 16 conditions as described in Table 3-2: Condition codes on
page 3-5. Every instruction mnemonic may be extended with the letters defined in
the mnemonic extension field.

If the always (AL) condition is specified, the instruction will be executed irrespective of
the value of the condition code flags. Any instruction that uses the never (NV) condition
is UNPREDICTABLE. The absence of a condition code on an instruction mnemonic implies
the always (AL) condition code.

31 28 27 0

cond

The ARM Instruction Set

3-5ARM Architecture Reference Manual
ARM DUI 0100B

Opcode [31:28] Mnemonic Extension Meaning Status flag state

0000 EQ Equal Z set

0001 NE Not Equal Z clear

0010 CS/HS Carry Set /Unsigned Higher or Same C set

0011 CC/LO Carry Clear /Unsigned Lower C clear

0100 MI Minus / Negative N set

0101 PL Plus /Positive or Zero N clear

0110 VS Overflow V set

0111 VC No Overflow V clear

1000 HI Unsigned Higher C set and Z clear

1001 LS Unsigned Lower or Same C clear or Z set

1010 GE Signed Greater Than or Equal N set and V set, or
N clear and V clear (N = V)

1011 LT Signed Less Than N set and V clear, or
N clear and V set (N != V)

1100 GT Signed Greater Than Z clear, and either N set and V set, or
N clear and V clear (Z = 0,N = V)

1101 LE Signed Less Than or Equal Z set, or N set and V clear, or
N clear and V set (Z = 1, N != V)

1110 AL Always (unconditional) -

1111 NV Never -

 Table 3-2: Condition codes

Logical shift right
by immediate

3-91ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Addressing
Mode 1Rm, LSR #<shift_imm>

Description This data-processing operand is used to provide the unsigned value of a register
shifted right (divided by a constant power of two).

It is produced by the value of register Rm logically shifted right by an immediate
value in the range 1 to 32. Zeros are inserted into the vacated bit positions. A shift
by 32 is encoded by <shift_imm> = 0 .

Operation if <shift_imm> == 0 then
<shifter_operand> = 0
<shifter_carry_out> = Rm[31]

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Logical_Shift_Right <shift_imm>
<shifter_carry_out> = Rm[<shift_imm> - 1]

Notes Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 0 1 0 Rm

ORR

3-60 ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Data processing

Addressing mode 1

ORR{<cond>}{S} Rd, Rn, <shifter_operand>

Description The ORR (Logical OR) instruction can be used to set selected bits in a register;
for each bit OR with 1 will set the bit, OR with 0 will leave it unchanged.

ORR performs a bitwise (inclusive) OR of the value of register Rn with the value of
<shifter_operand> , and stores the result in the destination register Rd.
The condition code flags are optionally updated (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn OR <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N, Z and C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 0 0 S Rn Rd shifter_operand

Logical shift left
by immediate

3-89ARM Architecture Reference Manual
ARM DUI 0100B

A
R

M

Addressing
Mode 1Rm, LSL #<shift_imm>

Description This data-processing operand is used to provide either the value of a register
directly (lone register operand (see page 3-88), or the value of a register shifted
left (multiplied by a constant power of two).

This instruction operand is produced by the value of register Rm, logically shifted
left by an immediate value in the range 0 to 31. Zeros are inserted into the vacated
bit positions. The carry-out from the shifter is the last bit shifted out, or the C flag if
no shift is specified (lone register operand, see page 3-88).

Operation if <shift_imm> == 0 then /* Register Operand */
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Logical_Shift_Left <shift_imm>
<shifter_carry_out> = Rm[32 - <shift_imm>]

Notes Default shift: If the value of <shift_imm> == 0 , the operand may be written as
just Rm, (see page 3-88).

Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 0 0 0 Rm

Branch

Architecture v4 only

BX

3-35ARM Architecture Reference Manual
ARM DUI 0100B

A
R

MBX{<cond>} Rm

Description The BX (Branch and Exchange instructions set) is UNDEFINED on ARM Architecture
Version 4. On ARM Architecture Version 4T, this instruction branches and selects
the instruction set decoder to use to decode the instructions at the branch
destination. The branch target address is the value of register Rm. The T flag is
updated with bit 0 of the value of register Rm.

BX is used to branch between ARM code and THUMB code. On ARM Architecture
4, it causes an UNDEFINED instruction exception to allow the THUMB instruction set
to be emulated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
T Flag = Rm[0]
PC = Rm[31:1] << 1

Exceptions None

Operation Condition Code

Notes Transferring to THUMB: When transferring to the THUMB instruction set, bit[0] of
PC will be cleared (set to zero), and bits[31:1] will be copied from Rm to
the PC.

Transferring to ARM: When transferring to the ARM instruction set, bit[0] of PC will
be cleared (set to zero), and bits[31:1] will be copied from Rm to the PC.
If bit[1] of Rm is set, the result is UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 1 0 SBO SBO SBO 0 0 0 1 Rm

8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addi addi
Add Immediate (x’3800 0000’)

addi rD ,rA,SIMM

if r A = 0
then r D ← EXTS(SIMM)
else r D ← (r A) + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed intorD.

Theaddi instruction is preferred for addition because it sets few status bits.

NOTE: addi uses the value 0, not the contents of GPR0, ifrA = 0.

Other registers altered:

• None

Simplified mnemonics:

li rD,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

14 D A SIMM

Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145

8

mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n ← spr[5–9] || spr[0–4]
SPR(n) ← (rS)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-12. The contents ofrS are placed into the designated special-purpose register.

If the SPR field contains any value other than one of the values shown in Table 8-12, and
the processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• See Table 8-12.

Simplified mnemonics:

mtxer rD equivalent to mtspr 1,rD
mtlr rD equivalent to mtspr 8,rD
mtctr rD equivalent to mtspr 9,rD

Table 8-12. PowerPC UISA SPR Encodings for mtspr

 SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note : The order of the two 5-bit halves of the SPR number
is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

NOTE: This is a split field.

Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123

8

lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD ,d(rA)

EA ← (r A) + EXTS(d)
r D← MEM(EA, 4)
r A ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded intorD.

EA is placed intorA.

If rA = 0, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31

d33 D A

8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments8-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addc x addc x
Add Carrying (x’7C00 0014’)

addc rD,rA,rB (OE = 0 Rc = 0)
addc. rD,rA,rB (OE = 0 Rc = 1)
addco rD,rA,rB (OE = 1 Rc = 0)
addco. rD,rA,rB (OE = 1 Rc = 1)

r D ← (r A) + (r B)

The sum (rA) + (rB) is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next bullet item).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc

Chapter 8. Instruction Set 8-17Chapter 8. Instruction Set 8-17Chapter 8. Instruction Set 8-17

8

addzex addzex
Add to Zero Extended (x’7C00 0194’)

addze rD ,rA (OE = 0 Rc = 0)
addze. rD ,rA (OE = 0 Rc = 1)
addzeo rD,rA (OE = 1 Rc = 0)
addzeo. rD ,rA (OE = 1 Rc = 1)

r D ← (r A) + XER[CA]

The sum (rA) + XER[CA] is placed intorD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see
next).

• XER:

Affected: CA

Affected: SO, OV (If OE = 1)

NOTE: For more information on condition codes see Section 2.1.3, “Condition
Register,” and Section 2.1.5, “XER Register”.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc

Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23

8

bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = 0 LK = 0)
bca BO,BI,target_addr (AA = 1 LK = 0)
bcl BO,BI,target_addr (AA = 0 LK = 1)
bcla BO,BI,target_addr (AA = 1 LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then
if AA = 1

then NIA ←iea EXTS(BD || 0b00)
else NIA ←iea CIA + EXTS(BD || 0b00)

if LK = 1
then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of
the branch. The BO field is encoded as described in Table 8-6. Additional information
about BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-6. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK

8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

target_addr specifies the branch target address.

If AA = 0, the branch target address is the sum of BD || 0b00 sign-extended and the address
of this instruction.

If AA = 1, the branch target address is the value BD || 0b00 sign-extended.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers altered:

Affected: Count Register (CTR) (If BO[2] = 0)

Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

Chapter 8. Instruction Set 8-163Chapter 8. Instruction Set

8

rlwinm x rlwinm x
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm rA,rS,SH,MB,ME (Rc = 0)
rlwinm. rA,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB , ME)
r A ← r & m

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed intorA.

NOTE: rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods
shown below:

• To extract ann-bit field, that starts at bit positionb in rS, right-justified intorA
(clearing the remaining 32 – n bits ofrA), set SH = b + n,
MB = 32 – n, and ME = 31.

• To extract ann-bit field, that starts at bit positionb in rS, left-justified intorA
(clearing the remaining 32 – n bits ofrA), set SH = b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) byn bits, set SH = n (32 – n),
MB = 0, and ME = 31.

• To shift the contents of a register right byn bits, by setting SH = 32 –n, MB = n, and
ME = 31. It can be used to clear the high-orderb bits of a register and then shift the
result left byn bits by setting SH = n, MB = b – n and ME = 31 – n.

• To clear the low-ordern bits of a register, by setting SH = 0, MB = 0, and
ME = 31 – n..

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc

8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

rlwimi x rlwimi x
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi rA,rS,SH,MB,ME (Rc = 0)
rlwimi. rA,rS,SH,MB,ME (Rc = 1)

n ← SH
r ← ROTL(r S, n)
m← MASK(MB, ME)
r A ← (r & m) | (r A & ¬ m)

The contents ofrS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is inserted intorA under control of the generated mask.

NOTE: rlwimi can be used to copy a bit field of any length from registerrS into the
contents ofrA. This field can start from any bit position inrS and be placed into
any position inrA. The length of the field can range from 0 to 32 bits. The
remaining bits in register rA remain unchanged:

• To copy byte_0 (bits 0-7) from rS into byte_3 (bits 24-31) of rA, set SH = 8 , MB =
24, and ME = 31.

• In general, to copy ann-bit field that starts in bit position b in register rS into register
rA starting a bit position c: set SH = 32 - c + b Mod(32), set MB =c, and set ME =
(c + n) – 1 Mod(32).

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Simplified mnemonics:
inslwi rA,rS,n,b equivalent to rlwimirA,rS,32 – b,b,b + n – 1
insrw i rA,rS,n,b (n > 0)equivalent torlwim i rA,rS,32 – (b + n),b, (b + n) – 1

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc

Appendix F.Simplified Mnemonics F-9

F

Table F-6 provides the simplified mnemonics for thebclr andbcclr instructions without
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-6. Simplified Branch Mnemonics for bclr and bcclr Instructions without
Link Register Update

Branch Semantics

LR Update Not Enabled

bclr
to LR

Simplified
Mnemonic

bcctr to CTR
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlr 0 bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflr 0 bcctr 4,0 bfctr 0

Decrement CTR, branch if CTR
nonzero

bclr 16,0 bdnzlr — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR
zero

bclr 18,0 bdzlr — —

Decrement CTR, branch if CTR
zero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
zero AND condition false

bcctr 0,0 bdzflr 0 — —

Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27

8

bclr x bclr x
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI (LK = 0)
bclrl BO,BI (LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then NIA ←iea LR[0–29] || 0b00
if LK

then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-8. Additional information about
BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-8. BO Operand Encodings

The branch target address is LR[0–29] || 0b00.

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

If the BO field specifies that the CTR is to be decremented, the entire 32-bit CTR is decremented.

In this table, z indicates a bit that is ignored.
Note : The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by
some PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 16 LK

16 Sun-4 Assembly Language Reference

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping-- Continued

Synthetic Instruction Hardware Equivalent(s) Comment
set value, reg

nJ
sethi %hi (value) , reg

rd
(if((value&Ox1ffJ == 0))

set value, reg sethi %hi (value) , reg ; (otherwise)
rd rd

or reg , % 10 (value) , reg
rd rd

Warning: do not use set in
an instruction's delay slot.

not reg
rsl

, reg
rd

xnor reg , %gO, reg
ral rd

(one's complement)

not reg
rd

xnor reg
rd

, %gO, reg
rd

(one's complement)

neg reg
rs2

, reg
rd

sub %gO, reg , reg
rs2 rd

(two's complement)

neg reg
rd

sub %gO, reg , reg
rd rd

(two's complement)

inc reg
rd

add reg ,1, reg (increment by 1)
rd J inc const13, reg add reg
rd

, const1 ,reg
rd

(increment by const13)
rd

inccc reg
rd

addcc reg ,1, reg (increment by 1 and set icc)
rd rd

inccc const13,reg addcc reg , const13,reg (increment by const13 and
rd rd rd

set icc)

dec reg
rd

sub reg ,1, reg
rd rd

(decrement by 1)

dec const13, reg sub reg , const13,reg (decrement by const13)
rd rd rd

deccc reg
rd

subcc reg ,1, reg (decrement by 1 and set icc)
rd rd

deccc const13, reg subcc reg , const13,reg (decrement by const13 and
rd rd rd

set icc)

btst reg or imm, reg andcc reg , reg or imm, %gO (bit test)
bset

- -. ral ral --:
(bit set) reg_or _~mm, reg

rd
or reg , reg or lmm, reg

bclr andn
rd - -. rd

(bit clear) reg_or_~mm, reg
rd

reg , reg or lmm, reg
btog

rd - -. rd
(bit toggle) reg_or_zmm, reg

rd
xor reg

rd
, reg_or _'mm, reg

rd

clr reg or %gO, %gO, reg
rd

(clear(zero) register)
clrb [aitdress] stb %gO, [address] (clear byte)
clrh [address] sth %gO, [address] (clear halfword)
clr [address] st %gO, [address] (clear word)

mov reg_or_imm, reg
rd

or %gO, reg or imm, reg
- - rd

mov %y, reg rd %y, reg
rs1 ral

mov %psr, reg rd %psr, reg
ra1 rsl

mov %wim, reg rd %wim, reg
rs1 ral

mov %tbr, reg rd %tbr, reg
ra1 ral •

mov reg_or_imm, %y wr %gO, reg_or _'mm, %y
mov reg_or_imm, %psr wr %gO, reg_or _imm, %psr
mov reg_or_imm, %wim wr %gO, reg_or _imm, %wim
mov reg or imm, %tbr wr %gO, reg or imm, %tbr

Revision A of27 March, 1990

SPARC V7.0

Rev. A (10/09/96)
83MATRA MHS

OR Inclusive-Or OR
Operation: r[rd] r[rs1] OR (r[rs2] or sign extnd(simm13))

Assembler
Syntax: or regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with either the contents of
r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit
field i=1). The result is stored in register r[rd].

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
62 MATRA MHS

LD Load Word LD
Operation: r[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax: ld [address], regrd

Description: The LD instruction moves a word from memory into the destination register, r[rd]. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction’s i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the
instruction if i equals one.

	��
�� �
����
� ��
��� ���� ��������� ��� ���� ������
����� ��������� ���
��� ����
�����

	�� ���� ������������ ����� ����
�� �������� ��
�� ����� ���� ��
���� ������ ���������
��
� ������� ����
���

�
��
��� �����������
��� ���� ��� ����� ���
!� �!����� ��� ���� ����� ���� ������������ ���������� ����

���� �����!� ����!�����

������		�
��
����� � 	�� �
�� ��� ���� ��� ��
��� �� ��� ���� ��� ���
�!� ���
����� ��� ���� �� ���� ��� �������� �� ��!���

���
��
������� ��
��� �
�� ���
�������� ������� �������� ���
� ���������

Traps: memory_address_not_aligned
data_access_exception

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
9MATRA MHS

ADDcc Add and modify icc ADDcc
Operation: r[rd] r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13))

n r[rd]<31>

z if r[rd] =0 then 1, else 0

v (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)

c (r[rs1]<31> AND operand2<31>)

OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))

Assembler
Syntax: addcc regrs1, reg_or_imm, regrd

Description: ADDcc adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit equals zero,
or to a 13-bit, sign-extended immediate operand if i equals one. The result is placed in the register
specified in the rd field. In addition, ADDcc modifies all the integer condition codes in the manner
described above.

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
10 MATRA MHS

ADDX Add with Carry ADDX
Operation: r[rd] r[rs1] + (r[rs2] or sign extnd(simm13)) + c

Assembler
Syntax: addx regrs1, reg_or_imm, regrd

Description: ADDX adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit equals zero, or
to a 13-bit, sign-extended immediate operand if i equals one. It then adds the PSR’s carry bit (c) to
that result. The final result is placed in the register specified in the rd field.

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
116 MATRA MHS

SUBcc Subtract and modify icc SUBcc
Operation: r[rd] r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))

n r[rd]<31>

z if r[rd] =0 then 1, else 0

v (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND operand2<31> AND r[rd]<31>)

c (not r[rs1]<31> AND operand2<31>)

OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Assembler
Syntax: subcc regrs1, reg_or_imm, regrd

Description: The SUBcc instruction subtracts either the contents of register r[rs2] (if the instruction’s i bit equals
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one)
from register r[rs1]. The result is placed in register r[rd]. In addition, SUBcc modifies all the integer
condition codes in the manner described above.

������		�
��
�
��� � �� ������ ������������ ����� � �� � � �� �� �	��

� ��
�� ���� ����
�� 	��� ������
�� ���
�

�
�� ����	������

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
16 MATRA MHS

Bicc Integer Conditional Branch Bicc
Operation: PC nPC

If condition true then nPC PC + (sign extnd(disp22) x 4)

else nPC nPC + 4

Assembler
Syntax: ba{,a} label

�".��/ �����

�"�.��/ ����� &,"#",!
� �"-

��.��/ ����� &,"#",!
� �-

��.��/ �����

� �.��/ �����

���.��/ �����

� .��/ �����

��(.��/ �����

� �(.��/ �����

���.��/ ����� &,"#",!
� ���(

��&.��/ ����� &,"#",!
� � (

�$#&.��/ �����

�"��.��/ �����

�)�.��/ �����

�)&.��/ �����

�
���� ���� �"&'%(�'�#"�&� �""(� ��'� ��� ��� ��� �&� &�'� �,� �$$�"��"�� 0���� ��'�%� '��� �%�"��� "�!��� � ��� �'� �&

"#'� �$$�"����� '��� � � ��� �� �&� �('#!�'��� ,� %�&�'�� � 0���� �&� &�#*"� �"� �%���&� ����(&�� �'� �&� #$'�#"� �

Description: The Bicc instructions (except for BA and BN) evaluate specific integer condition code combinations
(from the PSR’s icc field) based on the branch type as specified by the value in the instruction’s cond
field. If the specified combination of condition codes evaluates as true, the branch is taken, causing a
delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the condi-
tion codes evaluate as false, the branch is not taken. Refer to Section NO TAG for additional in-
formation on control transfer instructions.

��� '��� �%�"��� �&� "#'� '���"�� '��� �""(� ��'� ��� �� ���� �&� ��������� � ��� � � �&� &�'�� '��� �"&'%(�'�#"� �!!����'�1

 ,� �# #*�"�� '��� �%�"��� �"&'%(�'�#"� �'��� �� �,� �"&'%(�'�#"�� ��� 	
�� �+��('��� ������� �'� �&� �""(����� � ��

'��� �""(� ��� �� �&� -�%#�� '��� �� �,� �"&'%(�'�#"� ��� �+��('���� � ��� '��� �%�"��� �&� '���"�� '��� �""(� ��� �� �&

��"#%���� �"�� '��� �� �,� �"&'%(�'�#"� �&� �+��('���� � ���� ���'�#"� ����
�� %���%��"�� �� �,1�%�"��

�"&'%(�'�#"&�

�%�"��� ��)�%� ����� �+��('�&� ���� �� ����� �+��$'� �'� #��,&� '��� �""(� ��� �� *�'�� %�&$��'� '#� �'&� �� �,

�"&'%(�'�#"�

�%�"���
 *�,&� ��
��� ����(&�� �'� � *�,&� �%�"���&� %���%� �&&� #�� '��� �#"��'�#"� �#��&�� *#(�� "#%1

!� ,� ��"#%�� '��� �""(� ��� ��� � �"&'����� �'� �# #*&� '��� &�!�� �""(� ��� �� %(�&
� ��� ��	�� '��� �� �,

�"&'%(�'�#"� �&� �""(���� ��� ����� '��� �� �,� �"&'%(�'�#"� �&� �+��('���

���� �� �,� �"&'%(�'�#"� �# #*�"�� �� ����� �#'��%� '��"� �
�� &�#(�� "#'� ��� �� �� �,��1�#"'%# 1'%�"&��%

�"&'%(�'�#"�� � � ���� %�&('&� #�� �# #*�"�� �� ����� *�'�� �"#'��%� �� �,��� �#"'%# � '%�"&��%� �"&'%(�'�#"

�%�� �!$ �!�"'�'�#"1��$�"��"'� �"�� '��%��#%�� ("$%����'�� ��

Traps: none

SPARC V7.0

Rev. A (10/09/96)
17MATRA MHS

������

 ����� ����	�
��

� ����

�
 ���� �!�����
�%�!
�� #�"#

�
 ���� �!����� ���
 $�� (

��
 ���� �!����� ��� ��""� �!�
 $�� (� ��� ��� ���� %�

�� ���� �!����� ��� ��"" �� ���� %

��
� ���� �!����� ��� ��""� �!�
 $���� ��"����� �� ��� (

�	� ���� �!����� ��� 	�!!'� ��#�
���""� #����� ��"������

�

�

� ���� �!����� ���
���#�%� �

��� ���� �!����� ��� ���!���&� ��# %

�� ���� �!����� ��&�'"
�� #�"#

�

 ���� �!����� ���
�#�
 $�� ��#� (

�� ���� �!����� ��� �!��#�! ��#�(� ��� ��� ���� %��

��
 ���� �!����� ��� �!��#�!� �!�
 $�� ��#��� ���� %�

��� ���� �!����� ��� �!��#�!�� ��"����� ��#��� ��� (�

�		 ���� �!����� ��� 	�!!'� 	���!�
��!��#�!� #���� �!�
 $���� ��"������

��#� �

���� ���� �!����� ��� ��"�#�%� ��#� �

��	 ���� �!����� ��� ���!���&� 	���! ��#� %

����	��

����� �
 �	 �� �� �� �

���� � �����
�����

��

���
�

SPARC V7.0

Rev. A (10/09/96)
8 MATRA MHS

ADD Add ADD
Operation: r[rd] r[rs1] + (r[rs2] or sign extnd(simm13))

Assembler
Syntax: add regrs1, reg_or_imm, regrd

Description: The ADD instruction adds the contents of the register named in the rs1 field ,r[rs1], to either the con-
tents of r[rs2] if the instruction’s i bit equals zero, or to the 13-bit, sign-extended immediate operand
contained in the instruction if i equals one. The result is placed in the register specified in the rd field.

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

SPARC V7.0

Rev. A (10/09/96)
98 MATRA MHS

SRL Shift Right Logical SRL
Operation: r[rd] r[rs1] SRL by (r[rs2] or shcnt)

Assembler
Syntax: srl regrs1, reg_or_imm, regrd

Description: SRL shifts the contents of r[rs1] right by the number of bits specified by the shift count, filling the
vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift
count is zero.

��� ���� �� ���� ������ �� ���� $����� ���� ������ �� ��� ����
	�� ��� ���� ������ ������������ ��!�� ����� ��� ���� ���%

������ ��� �����
�� � ��� ���� �� ���� ������ �� ���� ����� ���� ������ �� ��� ����
	�� ��� ���� ��%����� ����� �"������

���������� !�� ��� �������� � ��� ���� ����� ������ ������� ���� ���� ���������� ������������ ���!��� ���

������ ������������ ��!�� ����� ��� ������� ��� ������� ������

����� ����� ������ ����� ���� �����#� ���� ���������� ������

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ��������
��
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� ������
������ �����������

� �

�����
�

SPARC V7.0

Rev. A (10/09/96)
96 MATRA MHS

SLL Shift Left Logical SLL
Operation: r[rd] r[rs1] SLL by (r[rs2] or shcnt)

Assembler
Syntax: sll regrs1, reg_or_imm, regrd

Description: SLL shifts the contents of r[rs1] left by the number of bits specified by the shift count, filling the
vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift
count is zero.

��� ���� �� ���� ������ ���
��� #����� ���� ������ ������ ���� 	��� ��� ���� ��
��� ��������
��� �� �� ����� ��� ���� ��������

��� �������� � ��� ���� �� ���� ������ ���
��� ����� ���� ������ ������ ���� 	��� ��� ���� ��$����� ����� �!������� ������$

���
����� �������� � ��� ���� ������������ ����
��
��� ���� ����
����� ������������
�� ��� ���� ��
��� ���$

�����
��� �� �� ����� ��� ������� ��� �
����� ������

���� ������������ ����� ���� �����"� ���� ���������� ������

Traps: none

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ��������
��
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� ������
������ ����������� �����
�

� �

Chapter 2 - Instruction-Set Mapping 15

Table 2-3 Floating-point Instructions- Continued

SPARC Mnemonic Argument List Description

FCMPEs fcmpes
FCMPEd fcmped
FCMPEq fcmpeq

2.4. Coprocessor
Instructions

freg , rsl
freg l' rs
freg , rsl

NOTE

Table 2-4

SPARC Mnemonic

freg Compare, Generate exception if unordered. rs2
fregrs2
freg rs2

All cpopn instructions take all operands from and return all results to coproces­
sor registers. The data types supported by the coprocessor are coprocessor­
dependent. Operand alignment is coprocessor-dependent.

If the EC field of the PSR is 0, or if no coprocessor is present, a cpopn instruc­
tion causes a cp _disabled trap.

The conditions causing a cp _except ion trap are coprocessor-dependent.

A non- cpopn (non-coprocessor-operate) instruction must be executed between
a cpop2 instruction and a subsequent cbccc instruction.

Coprocessor Instructions

Argument List Name Comments

CPopl cpopl opd, reg , reg , reg rsl rs2 rd Coprocessor operation
CPop2 cpop2

2.5. Synthetic Instructions

Table 2-5

Synthetic Instruction

cmp reg , reg or imm rsl --

jmp address

call reg_or_imm

tst reg rsl
ret
retl

restore
save

set value, reg rd

opd, reg , reg , reg rsl rs2 rd Coprocessor operation (may modify ccc's)

This section describes the mapping of synthetic instructions to hardware instruc­
tions.

Synthetic Instruction to Hardware Instruction Mapping

Hardware Equivalent(s) Comment

subcc reg , reg or imm, %gO (compare) rsl --

jmpl address, %gO

jrnpl reg_or_imm, %07

orcc reg , %gO , %gO (test) rsJ

jrnpl %i7+8,%gO (returnfrom subroutine)
jrnpl %o7+8,%gO (returnfrom leaf subroutine)

restore %gO,%gO,%gO (trivial restore)
save %gO,%gO,%gO (trivial save)

Warning: trivial save
should only be used in kernel
code!

or %gO, value, reg (if -4096 $; value $; 4095) rd

Revision A of 27 March, 1990

SPARC V7.0

Rev. A (10/09/96)
61MATRA MHS

JMPL Jump and Link JMPL
Operation: r[rd] PC

PC nPC

nPC r[rs1] + (r[rs2] or sign extnd(simm13))

Assembler
Syntax: jmpl address, regrd

Description: JMPL first provides linkage by saving its return address into the register specified in the rd field. It
then causes a register-indirect, delayed control transfer to an address specified by the sum of the con-
tents of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one.

��� ��(��&� #�� (��� #*-#&��&� (*#� ��('� #�� (��� �)!$� ���&�''� �'� "#",�&#�� �� !�!#&+���-

�&�''�"#(�� ��"��� (&�$� �'� ��"�&�(���

������		�
��
�
��� � �� &���'(�&-�"��&��(�
���� ��"� ��� �#"'(&)�(���)'�"�� �� ����� �"'(&)�(�#"� *�(�

�� � '�(� (#� �
�� � ����� ��"� � '#� ���)'��� (#� &�()&"� �&#!� ��
����� � �"� (��'� ��'��� �� � �'� '�(� (#� �� �"�� (��

&�()&"� ��)!$�� ���&�''� *#) �� ��� �%)� � (#� &�	��� �� ��

Traps: memory_address_not_aligned

Format:

������ �	 �� �� �	 �� �� �� �� � � �

����� �� ����������� ��� ����
������
�

������ �	 �� �� �	 �� �� �� �� �

�� ��� �������
������ �����������

NOP

CHAPTER 7 • Instructions 273

7.67 No Operation

Description The NOP instruction changes no program-visible state (except that of the PC
register).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Instruction op2 Operation Assembly Language Syntax Class

NOP 100 No Operation nop A1

Programming
Note

There are many other opcodes that may execute as NOPs;
however, this dedicated NOP instruction is the only one
guaranteed to be implemented efficiently across all
implementations.

00 op2 imm22 = 0rd = 0 0 0 0 0

31 24 02530 29 22 21

SPARC V7.0

Rev. A (10/09/96)
95MATRA MHS

SETHI Set High 22 bits of r register SETHI
Operation: r[rd]<31:10> imm22

r[rd]<9:0> 0

Assembler
Syntax: sethi const22, regrd

������ � ���� ��	����
���
�

Description: SETHI zeros the ten least significant bits of the contents of r[rd] and replaces its high-order 22 bits
with imm22. The condition codes are not affected.

�
��
�

���� ����� � � ��
��� � ��� ��� ��� ���� ���������� ������������ ��� ���� ��� �� 	
��� �������� ��� ����� ���

��������� � �������� ����� ��� ��� �������� �� ����� ������������

Traps: none

�������

����� �� �� �� �� �

���� �	 �����
����

��

270 Chapter 9—Reading MIPS Assembly Language

automatically if you omit s: It will treat addu d,s in exactly the same way as
addu d,d,s.

Unary operations like neg, not are always synthesized from one or more
of the three-register instructions. The assembler expects a maximum of two
operands for these instructions, so negu d,s is the same as subu d,zero,s
and not d will be assembled as nor d,zero,d.

Probably the most common register-to-register operation is move d,s. The
assembler implements this ubiquitous instruction as or d,zero,s.

9.3.2 Immediates: Computational Instructions with Constants

In assembly or machine language, a constant value encoded within an instruc-
tion is called an immediate value. Many of the MIPS arithmetical and logical
operations have an alternative form that uses a 16-bit immediate in place of
t. The immediate value is first sign-extended or zero-extended to 32 bits; the
choice of how it’s extended depends on the operation, but in general arithmeti-
cal operations sign-extend and logical operations zero-extend.

Although an immediate operand produces a different machine instruction
from its three-register version (e.g., addiu instead of addu), there is no need
for the programmer to write this explicitly. The assembler checks whether the
final operand is a register or an immediate and chooses the correct machine
instruction accordingly:

addu $2, $4, 64 => addiu $2, $4, 64

If an immediate value is too large to fit into the 16-bit field in the machine
instruction, then the assembler helps out again. It automatically loads the con-
stant into the assembler temporary register at/$1 and then uses it to perform
the operation:

addu $4, 0x12345 => li at, 0x12345
addu $4, $4, at

Note the li (load immediate) instruction, which you won’t find in the
machine’s instruction set; li is a heavily used macro instruction that loads an
arbitrary 32-bit integer value into a register without the programmer having to
worry about how it gets there—the assembler automatically chooses the best
way to code the operation, according to the properties of the integer value.

When the 32-bit value lies between ±32 K, the assembler can use a single
addiu with $0; when bits 16–31 are all zero, it can use ori; when bits 0–15
are all zero, it will use lui; and when none of these is possible, it will choose a
lui/ori pair:

li $3, -5 => addiu $3, $0, -5
li $4, 0x8000 => ori $4, $0, 0x8000

ADDIU IAdd Immediate Unsigned Word

The MIPS32® Instruction Set Manual, Revision 6.05 36

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: ADDIU rt, rs, immediate MIPS32

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer.

Description: GPR[rt]  GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp  GPR[rs] + sign_extend(immediate)
GPR[rt]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU
001001

rs rt immediate

6 5 5 16

ORI Or Immediate

296 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: ORI rt, rs, immediate MIPS32

Purpose: Or Immediate

To do a bitwise logical OR with a constant.

Description: GPR[rt]  GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operations:

GPR[rt]  GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI
001101

rs rt immediate

6 5 5 16

LW Load Word

220 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: LW rt, offset(base) MIPS32

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW
100011

base rt offset

6 5 5 16

ADDU Add Unsigned Word

38 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: ADDU rd, rs, rt MIPS32

Purpose: Add Unsigned Word

To add 32-bit integers.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp  GPR[rs] + GPR[rt]
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADDU
100001

6 5 5 5 5 6

SLTU ISet on Less Than Unsigned

The MIPS32® Instruction Set Manual, Revision 6.05 359

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: SLTU rd, rs, rt MIPS32

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: GPR[rd]  (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd]  0GPRLEN-1 || 1

else
GPR[rd]  0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SLTU

101011

6 5 5 5 5 6

BNE Branch on Not Equal

102 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: BNE rs, rt, offset MIPS32

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs]  GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Operation:

I: target_offset  sign_extend(offset || 02)
condition  (GPR[rs]  GPR[rt])

I+1: if condition then
PC  PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is  128 KBytes. Use jump (J) or jump register
(JR) to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE
000101

rs rt offset

6 5 5 16

EXT IExtract Bit Field

The MIPS32® Instruction Set Manual, Revision 6.05 173

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: EXT rt, rs, pos, size MIPS32 Release 2

Purpose: Extract Bit Field

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt]  ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and lsb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd  size-1
lsb  pos

The values of pos and size must satisfy all of the following relations:

0  pos  32
0  size  32
0  pos+size  32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 3.5 Operation of the EXT Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The operation is UNPREDICTABLE if lsb+msbd > 31.

Operation:

if (lsb + msbd) > 31) then
UNPREDICTABLE

endif
temp  032-(msbd+1) || GPR[rs]msbd+lsb..lsb
GPR[rt]  temp

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbd

(size-1)
lsb

(pos)
EXT

000000

6 5 5 5 5 6

31
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

31
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP

32-size
32-(msbd+1)

size
msbd+1

INS IInsert Bit Field

The MIPS32® Instruction Set Manual, Revision 6.05 177

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: INS rt, rs, pos, size MIPS32 Release 2

Purpose: Insert Bit Field

To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt]  InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and lsb (least significant bit of the
field), in instruction bits 10..6, as follows:

msb  pos+size-1
lsb  pos

The values of pos and size must satisfy all of the following relations:

0  pos  32
0  size  32
0  pos+size  32

 Figure 3-10 shows the symbolic operation of the instruction.

Figure 3.6 Operation of the INS Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msb

(pos+size-1)
lsb

(pos)
INS

000100

6 5 5 5 5 6

31
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

31
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

31
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

INS Insert Bit Field

178 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The operation is UNPREDICTABLE if lsb > msb.

Operation:

if lsb > msb) then
UNPREDICTABLE

endif
GPR[rt]  GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

JR Jump Register

192 The MIPS32® Instruction Set Manual, Revision 6.05

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Format: JR rs MIPS32
Assembly idiom MIPS32 Release 6

Purpose: Jump Register

To execute a branch to an instruction address in a register

Description: PC  GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that do not implement the MIPS16e or microMIPS ISA:

• Jump to the effective target address in GPR rs. If the target address is not 4-byte aligned, an Address Error
exception will occur when the target address is fetched.

For processors that do implement the MIPS16e or microMIPS ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Restrictions:

Control Transfer Instructions (CTIs) should not be placed in branch delay slots or Release 6 forbidden slots. CTIs
include all branches and jumps, NAL, ERET, ERETNC, DERET, WAIT, and PAUSE.

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI) is placed in the
delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to signal a Reserved Instruction exception.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the MIPS16e ASE or microMIPS ISA, if either of the two least-signif-
icant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an
instruction.

For processors that do implement the MIPS16e ASE or microMIPS ISA, if bit 0 is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

pre-Release 6:
31 26 25 21 20 11 10 6 5 0

SPECIAL
000000

rs
0

00 0000 0000
hint

JR
001000

6 5 10 5 6

 Release 6:
31 26 25 21 20 16 15 11 10 9 6 5 0

SPECIAL
000000

rs
0

00000
00000 hint

JALR
001001

6 5 5 5 5 6

JR IJump Register

The MIPS32® Instruction Set Manual, Revision 6.05 193

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALR and JALR.HB with rd = 0:

Pre-Release 6, JR and JALR were distinct instructions, both with primary opcode SPECIAL, but with distinct func-
tion codes.

Release 6: JR is defined to be JALR with the destination register specifier rd set to 0. The primary opcode and func-
tion field are the same for JR and JALR. The pre-Release 6 instruction encoding for JR is removed in Release 6.

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Operation:

I: temp  GPR[rs]
I+1:if (Config3ISA = 0) and (Config1CA = 0) then

PC  temp
else

PC  tempGPRLEN-1..1 || 0
ISAMode  temp0

endif

Exceptions:

None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

RISC-V INSTRUCTIONS: LR.D 153

ld rd, offset(rs1) x[rd] = M[x[rs1] + sext(offset)][63:0]
Load Doubleword. I-type, RV64I only.
Loads eight bytes from memory at address x[rs1] + sign-extend(offset) and writes them to
x[rd].
Compressed forms: c.ldsp rd, offset; c.ld rd, offset(rs1)

31 20 19 15 14 12 11 7 6 0

offset[11:0] rs1 011 rd 0000011

lh rd, offset(rs1) x[rd] = sext(M[x[rs1] + sext(offset)][15:0])
Load Halfword. I-type, RV32I and RV64I.
Loads two bytes from memory at address x[rs1] + sign-extend(offset) and writes them to
x[rd], sign-extending the result.

31 20 19 15 14 12 11 7 6 0

offset[11:0] rs1 001 rd 0000011

lhu rd, offset(rs1) x[rd] = M[x[rs1] + sext(offset)][15:0]
Load Halfword, Unsigned. I-type, RV32I and RV64I.
Loads two bytes from memory at address x[rs1] + sign-extend(offset) and writes them to
x[rd], zero-extending the result.

31 20 19 15 14 12 11 7 6 0

offset[11:0] rs1 101 rd 0000011

li rd, immediate x[rd] = immediate
Load Immediate. Pseudoinstruction, RV32I and RV64I.

Loads a constant into x[rd], using as few instructions as possible. For RV32I, it expands to
lui and/or addi; for RV64I, it’s as long as lui, addi, slli, addi, slli, addi, slli, addi.

lla rd, symbol x[rd] = &symbol
Load Local Address. Pseudoinstruction, RV32I and RV64I.

Loads the address of symbol into x[rd]. Expands into auipc rd, offsetHi then addi rd, rd,
offsetLo.

lr.d rd, (rs1) x[rd] = LoadReserved64(M[x[rs1]])
Load-Reserved Doubleword. R-type, RV64A only.
Loads the eight bytes from memory at address x[rs1], writes them to x[rd], and registers a
reservation on that memory doubleword.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

00010 aq rl 00000 rs1 011 rd 0101111

RISC-V INSTRUCTIONS: AMOADD.D 119

add rd, rs1, rs2 x[rd] = x[rs1] + x[rs2]
Add. R-type, RV32I and RV64I.
Adds register x[rs2] to register x[rs1] and writes the result to x[rd]. Arithmetic overflow is
ignored.
Compressed forms: c.add rd, rs2; c.mv rd, rs2

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 000 rd 0110011

addi rd, rs1, immediate x[rd] = x[rs1] + sext(immediate)
Add Immediate. I-type, RV32I and RV64I.
Adds the sign-extended immediate to register x[rs1] and writes the result to x[rd]. Arithmetic
overflow is ignored.
Compressed forms: c.li rd, imm; c.addi rd, imm; c.addi16sp imm; c.addi4spn rd, imm

31 20 19 15 14 12 11 7 6 0

immediate[11:0] rs1 000 rd 0010011

addiw rd, rs1, immediate x[rd] = sext((x[rs1] + sext(immediate))[31:0])
Add Word Immediate. I-type, RV64I only.
Adds the sign-extended immediate to x[rs1], truncates the result to 32 bits, and writes the
sign-extended result to x[rd]. Arithmetic overflow is ignored.
Compressed form: c.addiw rd, imm

31 20 19 15 14 12 11 7 6 0

immediate[11:0] rs1 000 rd 0011011

addw rd, rs1, rs2 x[rd] = sext((x[rs1] + x[rs2])[31:0])
Add Word. R-type, RV64I only.
Adds register x[rs2] to register x[rs1], truncates the result to 32 bits, and writes the sign-
extended result to x[rd]. Arithmetic overflow is ignored.
Compressed form: c.addw rd, rs2

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 000 rd 0111011

amoadd.d rd, rs2, (rs1) x[rd] = AMO64(M[x[rs1]] + x[rs2])
Atomic Memory Operation: Add Doubleword. R-type, RV64A only.
Atomically, let t be the value of the memory doubleword at address x[rs1], then set that
memory doubleword to t + x[rs2]. Set x[rd] to t.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

00000 aq rl rs2 rs1 011 rd 0101111

154 RISC-V INSTRUCTIONS: LR.W

lr.w rd, (rs1) x[rd] = LoadReserved32(M[x[rs1]])
Load-Reserved Word. R-type, RV32A and RV64A.
Loads the four bytes from memory at address x[rs1], writes them to x[rd], sign-extending the
result, and registers a reservation on that memory word.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

00010 aq rl 00000 rs1 010 rd 0101111

lw rd, offset(rs1) x[rd] = sext(M[x[rs1] + sext(offset)][31:0])
Load Word. I-type, RV32I and RV64I.
Loads four bytes from memory at address x[rs1] + sign-extend(offset) and writes them to
x[rd]. For RV64I, the result is sign-extended.
Compressed forms: c.lwsp rd, offset; c.lw rd, offset(rs1)

31 20 19 15 14 12 11 7 6 0

offset[11:0] rs1 010 rd 0000011

lwu rd, offset(rs1) x[rd] = M[x[rs1] + sext(offset)][31:0]
Load Word, Unsigned. I-type, RV64I only.
Loads four bytes from memory at address x[rs1] + sign-extend(offset) and writes them to
x[rd], zero-extending the result.

31 20 19 15 14 12 11 7 6 0

offset[11:0] rs1 110 rd 0000011

lui rd, immediate x[rd] = sext(immediate[31:12] << 12)
Load Upper Immediate. U-type, RV32I and RV64I.
Writes the sign-extended 20-bit immediate, left-shifted by 12 bits, to x[rd], zeroing the lower
12 bits.
Compressed form: c.lui rd, imm

31 12 11 7 6 0

immediate[31:12] rd 0110111

mret ExceptionReturn(Machine)
Machine-mode Exception Return. R-type, RV32I and RV64I privileged architectures.
Returns from a machine-mode exception handler. Sets the pc to CSRs[mepc], the
privilege mode to CSRs[mstatus].MPP, CSRs[mstatus].MIE to CSRs[mstatus].MPIE, and
CSRs[mstatus].MPIE to 1; and, if user mode is supported, sets CSRs[mstatus].MPP to 0.

31 25 24 20 19 15 14 12 11 7 6 0

0011000 00010 00000 000 00000 1110011

RISC-V INSTRUCTIONS: SLTU 161

sllw rd, rs1, rs2 x[rd] = sext((x[rs1] << x[rs2][4:0])[31:0])
Shift Left Logical Word. R-type, RV64I only.
Shifts the lower 32 bits of x[rs1] left by x[rs2] bit positions. The vacated bits are filled with
zeros, and the sign-extended 32-bit result is written to x[rd]. The least-significant five bits of
x[rs2] form the shift amount; the upper bits are ignored.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 001 rd 0111011

slt rd, rs1, rs2 x[rd] = x[rs1] <s x[rs2]
Set if Less Than. R-type, RV32I and RV64I.
Compares x[rs1] and x[rs2] as two’s complement numbers, and writes 1 to x[rd] if x[rs1] is
smaller, or 0 if not.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 010 rd 0110011

slti rd, rs1, immediate x[rd] = x[rs1] <s sext(immediate)
Set if Less Than Immediate. I-type, RV32I and RV64I.
Compares x[rs1] and the sign-extended immediate as two’s complement numbers, and writes
1 to x[rd] if x[rs1] is smaller, or 0 if not.

31 20 19 15 14 12 11 7 6 0

immediate[11:0] rs1 010 rd 0010011

sltiu rd, rs1, immediate x[rd] = x[rs1] <u sext(immediate)
Set if Less Than Immediate, Unsigned. I-type, RV32I and RV64I.
Compares x[rs1] and the sign-extended immediate as unsigned numbers, and writes 1 to x[rd]
if x[rs1] is smaller, or 0 if not.

31 20 19 15 14 12 11 7 6 0

immediate[11:0] rs1 011 rd 0010011

sltu rd, rs1, rs2 x[rd] = x[rs1] <u x[rs2]
Set if Less Than, Unsigned. R-type, RV32I and RV64I.
Compares x[rs1] and x[rs2] as unsigned numbers, and writes 1 to x[rd] if x[rs1] is smaller,
or 0 if not.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 011 rd 0110011

126 RISC-V INSTRUCTIONS: BNE

bne rs1, rs2, offset if (rs1 6= rs2) pc += sext(offset)
Branch if Not Equal. B-type, RV32I and RV64I.
If register x[rs1] does not equal register x[rs2], set the pc to the current pc plus the sign-
extended offset.
Compressed form: c.bnez rs1, offset

31 25 24 20 19 15 14 12 11 7 6 0

offset[12|10:5] rs2 rs1 001 offset[4:1|11] 1100011

bnez rs1, offset if (rs1 6= 0) pc += sext(offset)
Branch if Not Equal to Zero. Pseudoinstruction, RV32I and RV64I.
Expands to bne rs1, x0, offset.

c.add rd, rs2 x[rd] = x[rd] + x[rs2]
Add. RV32IC and RV64IC.
Expands to add rd, rd, rs2. Invalid when rd=x0 or rs2=x0.

15 13 12 11 7 6 2 1 0

100 1 rd rs2 10

c.addi rd, imm x[rd] = x[rd] + sext(imm)
Add Immediate. RV32IC and RV64IC.
Expands to addi rd, rd, imm.

15 13 12 11 7 6 2 1 0

000 imm[5] rd imm[4:0] 01

c.addi16sp imm x[2] = x[2] + sext(imm)
Add Immediate, Scaled by 16, to Stack Pointer. RV32IC and RV64IC.
Expands to addi x2, x2, imm. Invalid when imm=0.

15 13 12 11 7 6 2 1 0

011 imm[9] 00010 imm[4|6|8:7|5] 01

c.addi4spn rd′, uimm x[8+rd′] = x[2] + uimm
Add Immediate, Scaled by 4, to Stack Pointer, Nondestructive. RV32IC and RV64IC.
Expands to addi rd, x2, uimm, where rd=8+rd′. Invalid when uimm=0.

15 13 12 5 4 2 1 0

000 uimm[5:4|9:6|2|3] rd′ 00

RISC-V INSTRUCTIONS: SRLIW 163

sraw rd, rs1, rs2 x[rd] = sext(x[rs1][31:0] >>s x[rs2][4:0])
Shift Right Arithmetic Word. R-type, RV64I only.
Shifts the lower 32 bits of x[rs1] right by x[rs2] bit positions. The vacated bits are filled with
x[rs1][31], and the sign-extended 32-bit result is written to x[rd]. The least-significant five
bits of x[rs2] form the shift amount; the upper bits are ignored.

31 25 24 20 19 15 14 12 11 7 6 0

0100000 rs2 rs1 101 rd 0111011

sret ExceptionReturn(Supervisor)
Supervisor-mode Exception Return. R-type, RV32I and RV64I privileged architectures.
Returns from a supervisor-mode exception handler. Sets the pc to CSRs[sepc], the privilege
mode to CSRs[sstatus].SPP, CSRs[sstatus].SIE to CSRs[sstatus].SPIE, CSRs[sstatus].SPIE
to 1, and CSRs[sstatus].SPP to 0.

31 25 24 20 19 15 14 12 11 7 6 0

0001000 00010 00000 000 00000 1110011

srl rd, rs1, rs2 x[rd] = x[rs1] >>u x[rs2]
Shift Right Logical. R-type, RV32I and RV64I.
Shifts register x[rs1] right by x[rs2] bit positions. The vacated bits are filled with zeros, and
the result is written to x[rd]. The least-significant five bits of x[rs2] (or six bits for RV64I)
form the shift amount; the upper bits are ignored.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 101 rd 0110011

srli rd, rs1, shamt x[rd] = x[rs1] >>u shamt
Shift Right Logical Immediate. I-type, RV32I and RV64I.
Shifts register x[rs1] right by shamt bit positions. The vacated bits are filled with zeros, and
the result is written to x[rd]. For RV32I, the instruction is only legal when shamt[5]=0.
Compressed form: c.srli rd, shamt

31 26 25 20 19 15 14 12 11 7 6 0

000000 shamt rs1 101 rd 0010011

srliw rd, rs1, shamt x[rd] = sext(x[rs1][31:0] >>u shamt)
Shift Right Logical Word Immediate. I-type, RV64I only.
Shifts the lower 32 bits of x[rs1] right by shamt bit positions. The vacated bits are filled with
zeros, and the sign-extended 32-bit result is written to x[rd]. The instruction is only legal
when shamt[5]=0.

31 26 25 20 19 15 14 12 11 7 6 0

000000 shamt rs1 101 rd 0011011

160 RISC-V INSTRUCTIONS: SH

sh rs2, offset(rs1) M[x[rs1] + sext(offset)] = x[rs2][15:0]
Store Halfword. S-type, RV32I and RV64I.
Stores the two least-significant bytes in register x[rs2] to memory at address x[rs1] + sign-
extend(offset).

31 25 24 20 19 15 14 12 11 7 6 0

offset[11:5] rs2 rs1 001 offset[4:0] 0100011

sw rs2, offset(rs1) M[x[rs1] + sext(offset)] = x[rs2][31:0]
Store Word. S-type, RV32I and RV64I.
Stores the four least-significant bytes in register x[rs2] to memory at address x[rs1] + sign-
extend(offset).
Compressed forms: c.swsp rs2, offset; c.sw rs2, offset(rs1)

31 25 24 20 19 15 14 12 11 7 6 0

offset[11:5] rs2 rs1 010 offset[4:0] 0100011

sll rd, rs1, rs2 x[rd] = x[rs1] << x[rs2]
Shift Left Logical. R-type, RV32I and RV64I.
Shifts register x[rs1] left by x[rs2] bit positions. The vacated bits are filled with zeros, and
the result is written to x[rd]. The least-significant five bits of x[rs2] (or six bits for RV64I)
form the shift amount; the upper bits are ignored.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 001 rd 0110011

slli rd, rs1, shamt x[rd] = x[rs1] << shamt
Shift Left Logical Immediate. I-type, RV32I and RV64I.
Shifts register x[rs1] left by shamt bit positions. The vacated bits are filled with zeros, and
the result is written to x[rd]. For RV32I, the instruction is only legal when shamt[5]=0.
Compressed form: c.slli rd, shamt

31 26 25 20 19 15 14 12 11 7 6 0

000000 shamt rs1 001 rd 0010011

slliw rd, rs1, shamt x[rd] = sext((x[rs1] << shamt)[31:0])
Shift Left Logical Word Immediate. I-type, RV64I only.
Shifts x[rs1] left by shamt bit positions. The vacated bits are filled with zeros, the result is
truncated to 32 bits, and the sign-extended 32-bit result is written to x[rd]. The instruction is
only legal when shamt[5]=0.

31 26 25 20 19 15 14 12 11 7 6 0

000000 shamt rs1 001 rd 0011011

156 RISC-V INSTRUCTIONS: NEG

neg rd, rs2 x[rd] = -x[rs2]
Negate. Pseudoinstruction, RV32I and RV64I.
Writes the two’s complement of x[rs2] to x[rd]. Expands to sub rd, x0, rs2.

negw rd, rs2 x[rd] = sext((-x[rs2])[31:0])
Negate Word. Pseudoinstruction, RV64I only.

Computes the two’s complement of x[rs2], truncates the result to 32 bits, and writes the
sign-extended result to x[rd]. Expands to subw rd, x0, rs2.

nop Nothing
No operation. Pseudoinstruction, RV32I and RV64I.

Merely advances the pc to the next instruction. Expands to addi x0, x0, 0.

not rd, rs1 x[rd] = ∼x[rs1]
NOT. Pseudoinstruction, RV32I and RV64I.

Writes the ones’ complement of x[rs1] to x[rd]. Expands to xori rd, rs1, -1.

or rd, rs1, rs2 x[rd] = x[rs1] | x[rs2]
OR. R-type, RV32I and RV64I.
Computes the bitwise inclusive-OR of registers x[rs1] and x[rs2] and writes the result to
x[rd].
Compressed form: c.or rd, rs2

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 110 rd 0110011

ori rd, rs1, immediate x[rd] = x[rs1] | sext(immediate)
OR Immediate. I-type, RV32I and RV64I.
Computes the bitwise inclusive-OR of the sign-extended immediate and register x[rs1] and
writes the result to x[rd].

31 20 19 15 14 12 11 7 6 0

immediate[11:0] rs1 110 rd 0010011

rdcycle rd x[rd] = CSRs[cycle]
Read Cycle Counter. Pseudoinstruction, RV32I and RV64I.

Writes the number of cycles that have elapsed to x[rd]. Expands to csrrs rd, cycle, x0.

158 RISC-V INSTRUCTIONS: REMUW

remuw rd, rs1, rs2 x[rd] = sext(x[rs1][31:0] %u x[rs2][31:0])
Remainder Word, Unsigned. R-type, RV64M only.
Divides the lower 32 bits of x[rs1] by the lower 32 bits of x[rs2], rounding towards zero,
treating the values as unsigned numbers, and writes the sign-extended 32-bit remainder to
x[rd].

31 25 24 20 19 15 14 12 11 7 6 0

0000001 rs2 rs1 111 rd 0111011

remw rd, rs1, rs2 x[rd] = sext(x[rs1][31:0] %s x[rs2][31:0])
Remainder Word. R-type, RV64M only.
Divides the lower 32 bits of x[rs1] by the lower 32 bits of x[rs2], rounding towards zero,
treating the values as two’s complement numbers, and writes the sign-extended 32-bit re-
mainder to x[rd].

31 25 24 20 19 15 14 12 11 7 6 0

0000001 rs2 rs1 110 rd 0111011

ret pc = x[1]
Return. Pseudoinstruction, RV32I and RV64I.

Returns from a subroutine. Expands to jalr x0, 0(x1).

sb rs2, offset(rs1) M[x[rs1] + sext(offset)] = x[rs2][7:0]
Store Byte. S-type, RV32I and RV64I.
Stores the least-significant byte in register x[rs2] to memory at address x[rs1] + sign-
extend(offset).

31 25 24 20 19 15 14 12 11 7 6 0

offset[11:5] rs2 rs1 000 offset[4:0] 0100011

sc.d rd, rs2, (rs1) x[rd] = StoreConditional64(M[x[rs1]], x[rs2])
Store-Conditional Doubleword. R-type, RV64A only.
Stores the eight bytes in register x[rs2] to memory at address x[rs1], provided there exists
a load reservation on that memory address. Writes 0 to x[rd] if the store succeeded, or a
nonzero error code otherwise.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

00011 aq rl rs2 rs1 011 rd 0101111

